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ABSTRACT OF DISSERTATION

ALGORITHMS FOR FAULT TOLERANCE IN DISTRIBUTED SYSTEMS AND
ROUTING IN AD HOC NETWORKS

Checkpointing and rollback recovery are well-known teglueis for coping with fail-
ures in distributed systems. Future generation Superctargwill be message passing dis-
tributed systems consisting of millions of processors. Wesrumber of processors grow,
failure rate also grows. Thus, designing efficient checkiiog and recovery algorithms
for coping with failures in such large systems is importamtthese systems to be fully uti-
lized. We presented a novel communication-induced chenkipg algorithm which helps
in reducing contention for accessing stable storage t@ stioeckpoints. Under our algo-
rithm, a process involved in a distributed computation calependently initiate consistent
global checkpointing by saving its current state, calledrddtive checkpoint. Other pro-
cesses involved in the computation come to know about theistemt global checkpoint
initiation through information piggy-backed with the ajgjation messages or limited con-
trol messages if necessary. When a process comes to knowahew consistent global
checkpoint initiation, it takes a tentative checkpoineaftrocessing the message. The ten-
tative checkpoints taken can be flushed to stable storaga titeee is no contention for
accessing stable storage. The tentative checkpointdteageith the message logs stored
in the stable storage form a consistent global checkpoint.

Ad hoc networks consist of a set of nodes that can form a n&tfeorcommunication
with each other without the aid of any infrastructure or hanrgervention. Nodes are
energy-constrained and hence routing algorithm desigoethése networks should take
this into consideration. We proposed two routing protodotsmobile ad hoc networks
which prevent nodes from broadcasting route requests eseadly during the route dis-
covery phase and hence conserve energy and prevent conté@mntihe network. One is
called Triangle Based Routing (TBR) protocol. The othettirauprotocol we designed is
called Routing Protocol with Selective Forwarding (RP39th of the routing protocols
greatly reduce the number of control packets which are rieedestablish routes between
pairs of source nodes and destination nodes. As a resujtredece the energy consumed
for route discovery. Moreover, these protocols reduce estign and collision of packets
due to limited number of nodes retransmitting the route estgl
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Chapter 1

Introduction

This thesis makes contribution in the following two areaamnely, (i) checkpointing and
rollback recovery in distributed systems and (ii) routimgnnobile ad hoc networks. In
this chapter, we briefly describe the problems addressedsalutions proposed in this

dissertation in these areas.

1.1 Checkpointing and Rollback Recovery in Distributed
systems

A distributed system is a set of computers connected by a aoriwation network. A
distributed computation is a set of processes running istailduted system trying to solve
a specific problem. Processes involved in a distributed coation communicate with each
other by sending messages to each other over the commuonigattwork. Current day
supercomputers are distributed systems and applicatimmsig on these supercomputers
are distributed computations.

As the number of processors in a distributed system grovilsiydarate also grows.
So, handing failures efficiently in such systems is an ingoarproblem. Checkpointing
and rollback recovery are established techniques for Ingrfdilures in such systems. To
recover from failures, the state of the processes involaeal distributed computation are
saved to stable storage periodically; when a failure og@lirthe processes involved in the

computation are restarted from a previously saved statedheesents a consistent state of
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the computation.

1.1.1 Optimistic Checkpointing and Recovery Algorithm

Based on how checkpoints of processes are taken, existeukpbinting algorithms can
be classified into three main categorieareoordinatedcoordinated[11, 33, 36,41, 59,

and communication-inducefR, 34, 43, 45]. In uncoordinatedcheckpointing, processes
take local checkpoints without any coordination. To reecdk@m a failure, the failed pro-
cess determines a consistent global checkpoint by commtimicwith other processes
and all the processes rollback to that consistent globatkg@nt. Since multiple check-
points are storedjncoordinateacheckpointing is not a storage resource efficient approach.
In order to achieve domino-free recovecgordinatedcheckpointing schemes have been
proposed11,33,36,41,59]. In this approach, processes synchronize their checkipgin
activities by passing explicit control messages so thabhally consistent checkpoint is
always maintained in the systenCommunication-inducedheckpointing is a hybrid of
uncoordinatedand coordinatedcheckpointing schemes. Undeommunication-induced
checkpointing algorithms2] 34, 43-45], processes are allowed to take local checkpoints
independently, and the number of useless checkpoints isnizied by forcing processes
to take communication-induced (forced) checkpoints uméetain situations. Hence, this
class of algorithms overcome the disadvantagasebordinatedandcoordinatedcheck-
pointing algorithms, and have the advantages of both coateld and uncoordinated check-
pointing algorithms.

Communication-inducecheckpointing appears to be an attractive approach fokkehec
pointing in distributed systems. However, existing algoris in this category have the
following drawbacks: Several processes may take checigpsimultaneously which can
cause network contention and hence impact the checkpgiotiarheadand extend the
overall execution timedb, 66]. In general, communication-induced checkpoints have to

be taken before processing a received message, which maficsigtly prolong the re-
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sponse time for processing the corresponding receivedagess Moreover, communi-
cation pattern may induce large number of communicatialxéed checkpoints since pro-
cesses have to take their local checkpoints (including comecation-induced checkpoints)
immediately after specified conditions hold. We addressidsue and propose an “Opti-
mistic” [1, 19] checkpointing algorithm.

The optimistic checkpointing algorithm allows processesave checkpoints and mes-
sage logs in memory first and then flush them to stable storhge there is no contention
for accessing stable storage. Each checkpoint taken bylgaritam is composed of a
tentativecheckpoint representing the state of the process and asetssiages logged after
taking thetentativecheckpoint. This mechanism gives processes the libertigadsing the
time to take tentative checkpoints and hence no checkperdsto be taken before pro-
cessing any received message. Furthermore, processddate ahoose their convenient
time for writing the tentative checkpoints and the assedahessage logs to stable storage
at the network file server. This helps in minimizing netwodktention for accessing stable

storage.

1.2 Routing in Mobile ad hoc Networks

With recent advances in wireless communication technolaggless networks have be-
come increasingly popular. There are several types of @ssshetworks including wireless
local area networks, mobile ad hoc networks, sensor nesvamnki cellular networks. In
this dissertation, we focus on routing algorithms for melaitl hoc networks.

Mobile ad hoc networks generally have the following chagastics: dynamically
changing network topology, limited network bandwidth, myyeconstrained nodes, and
limited physical security. Due to the dynamic nature of tbealogy, there are no fixed
routers in mobile ad hoc networks; every node in the netwotk as a router also. Design-
ing efficient routing algorithms that take the energy caxiatrof nodes and the dynamically

changing topology of the network into consideration is imaot.
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Routing algorithms can be broadly classified as table daigorithms, demand driven
algorithms, and position based algorithms. Table drivering algorithms maintain routes
from each node to every other node in the network proactivalizen network topology
changes, the updates are propagated throughout the netwantter to maintain accurate
routing tables. This type of algorithms are not suitablerfetworks with nodes moving
frequently due to the communication costs involved in togglchanges. On the other hand
demand driven algorithms requires nodes to establishsautly when a source node needs
aroute to a destination node. In this case, the source niid¢en a route discovery process
within the network. The process is completed once a routeusd or is terminated when
no possible routes to the destination exists. An estaldistigte is maintained until it is no
longer needed or the route breaks due to the mobility of tltes@n the route. Position
based routing algorithms rely on geographic position imf@tion to discover routes to
destinations. In this dissertation, we present two demaiverd routing algorithms we
designed for mobile ad hoc networks. Next, we briefly dis¢hescharacteristics of these

two routing protons.

1.2.1 Triangle Based Routing

Many of the existing demand driven routing algorithms fohad networks employ simple
flooding mechanism to disseminate route request messageg doute discovery phase.
Under these algorithms, a source node needing a route tdiaates, broadcasts a route
request message to all nodes within its transmission raBgeh node receiving this mes-
sage rebroadcasts the message if it has not already dond Husprocess continues until
all nodes that are reachable from the source receive thisages When the destination
node receives this message, it sends a route reply messagje tvévels along the route
traversed by the route request in the reverse directioneaches the source, establishing
the route from the source to the destination. Under thisagagr each node reachable from

the source forwards the route request message once, whithtie redundant rebroadcast-
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ing of route request messages. In dense networks, thisagpvall result in high network
contention, high network load, and high network delay.

We developed two routing algorithms which address thisas§wr algorithms reduce
the redundant rebroadcasting of the route requests. Indlgthithms, we assume that
all nodes lie in the same plane and they all have the sameniissisn rangek. In the
first algorithm, we divide the plane into a number of equiiatériangle areas as shown
in Figurel.1 Each triangle area is assigned a unique identifier callezblite Location
Identifier. All nodes in a triangle area know the identifiedaxchange it with their neigh-
bors periodically. This way, each node in the network has@pmate knowledge about its
neighbor locations. Based on this information, a nbdeable to decide whether and when
to forward a route request message received from a node nBadumessages are greatly

suppressed under this approach. We call this algorithrm@lkgsbased Routing Algorithm.

S3 S S So

hy

S1

hy™

h.

hs

Figure 1.1: Plane divided into triangle areas

1.2.2 A Routing Algorithm with Selective Forwarding for ad hoc Net-
works

The other algorithm which we call Routing Algorithm with Setive Forwarding (RPSF),

allows.each.,node to,select a subset of its neighbors to fdrreaute requests. Since only a
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small subset of the nodes receiving a route request foriarcoiute request, this approach
significantly reduces the routing overhead, especiallyeinsg networks. We theoretically
prove that this approach is guaranteed to find a route to tsndéion if one exists. We
compare the performance of our algorithm with the well kna¥ehhoc On-demand Dis-
tance Vector (AODV) routing algorithm. On average, our aiifpon needs less than 12.6%
of the routing-control packets needed by AODV. Simulatiesults also show that our al-

gorithm has a higher packet-delivery ratio and lower aveyl-to-end delay than AODV.

1.3 Organization of this Dissertation

Rest of this dissertation is organized as follows. In Chapteve present an optimistic
checkpointing and message logging approach for consigtebal checkpoint collection
in distributed systems. This allows a process to indepehdantiate consistent global
checkpointing by saving its current state, called a tevgatheckpoint. Recording of a
consistent global checkpoint of the distributed compatais complete when all the pro-
cesses involved in the computation have taken and savedehttive checkpoints and the
associated message logs to stable storage. In Chgptex present a routing algorithm,
called Triangle Based Routing (TBR) algorithm, which ug$ Relative Location Identi-
fier (RLI) to limit the number of route requests sent over thenork and hence improves
the efficiency in routing for static sensor networks. We presnother routing algorithm,
Routing Algorithm with Selective Forwarding for MANETSs (BF) in Chapted. RPSF
employs relative neighborhood information to suppressitiraber of route requests prop-
agated. This is similar to the TBR algorithm. The two aldaris differ in the way in which
they try to reduce the redundant rebroadcasting of routeastq. Under RPSF, a node for-
wards a received route request packets only when the paekdtseem to do so while nodes
running TBR algorithm elect to forward / discard the packetsed on local information it

has about the nodes which were already covered by the rogiese Finally, Chaptes
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concludes this dissertation and discusses future resdamsadtions.
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Chapter 2

Checkpointing and Recovery in
Distributed Systems

2.1 Introduction

Checkpointing and rollback recovery are popular approaébehandling failures in dis-
tributed systems. Existing checkpointing algorithms carclassified into three main cat-
egories -uncoordinategdcoordinated11, 33, 36,41, 59, and communication-induce[2,
34,43,45]. In uncoordinatedcheckpointing, processes involved in a distributed compu-
tation take local checkpoints without any coordination. récover from a failure, the
failed process determines a consistent global checkpgirtodonmunicating with other
processes and all the processes rollback to that consigitael checkpoint. Message
logging [28, 30,60, 61] has been suggested in the literature to cope with the doefino
fect. Since multiple checkpoints are storedcoordinateccheckpointing is not a storage
resource efficient approach. Moreover, some or all of thelgh@ints taken may not be
part of any consistent global checkpoint and hence are ssel¢ence, in the worst case,
all processes may have to be restarted from the beginning whe process failscoor-
dinatedcheckpointing schemes have been propod4d33, 36,41, 59| to prevent useless
checkpoints. In this approach, processes synchronizedinetkpointing activities by pass-
ing explicit control messages so that a globally consisteatkpoint is always maintained

in the system.Communication-inducedheckpointing is a hybrid ofincoordinatedand
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coordinatedcheckpointing schemes. Undesmmunication-inducedheckpointing algo-
rithms [2, 34,43-45], processes are allowed to take local checkpoints indegretyd and
the number of useless checkpoints is reduced by forcingege®s to take communication-
induced (forced) checkpoints under certain situationsddethis class of algorithms over-
come the disadvantages wficoordinatecand coordinatedcheckpointing algorithms, and
have the advantages of both coordinated and uncoordinaéstgointing algorithms.

Communication-inducecheckpointing appears to be an attractive approach fokehec
pointing in distributed systems. However, existing altjoris in this category have the
following drawbacks: Several processes may take checigpsimultaneously which can
cause network contention for accessing stable storage emcklimpact the checkpoint-
ing overheadand extend the overall execution tin®5[66]. In general, communication-
induced checkpoints have to be taken before processingeaveelcmessage, which may
significantly prolong the response time of those correspmneceived messages. More-
over, communication pattern may induce large number of comeation-induced check-
points. Processes have to take their local checkpointiifiimggy communication-induced
checkpoints) immediately after specified conditions hold.

We use the term “Optimistic™l, 19] because our algorithm saves checkpoints and mes-
sage logs in memory first and then flushes them to stable sttoggrevent contention for
accessing stable storage. Each checkpoint taken by outithlgas composed of eentative
checkpoint representing the state of the process and a sessfages logged after taking
thetentativecheckpoint. This mechanism gives processes the liberth@bsing the time
to take tentative checkpoints and hence no checkpoint riedmtstaken before processing
any received message. Furthermore, processes are ableotgedheir convenient time for
writing the tentative checkpoints and the associated ngestems to stable storage at the
network file server. This helps in reducing network contamfor access to stable storage.
Moreover, our algorithm does not incur additional overheéael to communication-induced

checkpoints, unlike many other existing algorithms.
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The rest of this chapter is organized as follows. First, veewls related work in Sec-
tion 2.2 In Section2.3we present the system model and background. Then, Set#on
describes oucommunication-inducecheckpointing algorithm and the recovery algorithm.
We present the performance evaluation of our checkpoiratiggrithm and also compare
our algorithm with one other algorithm in Secti@®. Thereafter, we conclude in Sec-

tion 2.6.

2.2 Related Work

In this section, we briefly review previously proposed aitons related to our checkpoint-
ing algorithm.

Barigazzi and Strigini3] presented aoordinatedcheckpointing algorithm in which
they assume that all communications between processesoaneca Koo and Touegdo)
relaxed this assumption. Some other worg3 B6] have focused on reducing the number
of synchronization messages and the number of forced cbedkpduring checkpoint-
ing. These algorithms force relevant processes to blocikgune checkpointing process,
which will degrade system performanc20l. Chandy and Lamportlf3] presented the
first non-blocking algorithm focoordinatedcheckpointing. However, it leads to a mes-
sage complexity oD (n?). Silva et al. b9 also addressed this issue and presented another
non-blocking algorithm.

Cao and Singhalll1l] presented a min-process and non-blocking algorithm. mbrs
blocking algorithm is based on the concept of “mutable cpeait”, which can be saved
anywhere, e.g., the main memory or the local disk. Therefiie algorithm avoids the
overhead of transferring “mutable checkpoints” to the letatorage at the file server across
the network. Moreover, it forces only a minimum number ofqgasses to save their check-
points on the stable storage. Mandal and Mukhopadhy3]epfesented a checkpointing
algorithm in which processes are arranged in a ring. Presesm® allowed to take check-

points independently anytime in a predetermined time valecalled total checkpointing

10
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time (TCT). Once a process takes a checkpoint, it sends &gbiet request to the next
process in the ring. A process receiving the checkpointestjuas to take a checkpoint if
it did not take a checkpoint in that interval so far and themwfrds the checkpoint request
to the next process in the ring and this continues. Therenre@tawbacks with this algo-
rithm. One is that clocks need to be synchronized so that padess has the same view
of the checkpoint interval. The other problem is, if a predadkes a checkpoint early in the
interval TCT, it will force all other processes to take cheaits sequentially which will
cause contention at stable storage. In our algorithm, aegsodoes not send any control
message for taking checkpoints unless it is necessary.dverewhen a process receives a
message from a process that already took a tentative chiatkipoloes not have to take a
checkpoint immediately; it can take checkpoint after pssoag the message. In addition,
the checkpoint taken need not be flushed immediately toes&tbrage, thus preventing
contention for stable storage.

Network contention that arises due to multiple processaslsineously trying to store
local checkpoints to the stable storage simultaneouslgicamficantly increase the check-
pointing overheadand extend the total execution time of the distributed caiadpn [65,
66]. Contention for stable storage can be mitigatedstaggeringthe checkpointsg7].
Staggereaheckpointing attempts to prevent two or more processesdiackpoints at the
same time, thereby reducing contention for stable stordagehe best of our knowledge,
checkpointstaggeringhas previously been proposed only égnchronousor coordinated,
checkpointing algorithms5[7, 66]. These algorithms are referred to as staggered check-
pointing algorithms. Plankg7] proposed a variation of the Chandy-Lamport algoritidi3j [
that staggers Bmited number of checkpoints depending on the network topologyw-Ho
ever, a completely connected topology would subvert staggén this algorithm. Based
on Plank’s observation, Vaidy&®] proposed another coordinated checkpointing algorithm
that staggersll checkpoints. Like Plank§7] and Chandy-Lamportl3], Vaidya’s algo-

rithm [66] uses a coordinator to initiate the checkpointing procéisbas two phases. In
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the first phase, the coordinatBg takes a physical checkpoint (i.e., saves its current state i
stable storage) and sendsa&e checkpointmessage to the next proceBs Upon receipt

of the take checkpointmessage, proceds takes a physical checkpoint and resends it to
processP;, wherei>0 andj = (i+1) modn. The phase is terminated when the coordinator
P, receives théake checkpoinimessage from the last proceBs ;. In the second phase,
the channel states, called logical checkpoints, are recorihe set of logical checkpoints,
together with the physical checkpoints, form a consistéotia state. The algorithm suc-
cessfully staggers all physical checkpoints. Howeverhasva in our simulation results,
contention for stable storage always exists for taking tggchl checkpoints. In terms
of the number of collisions due to the logged messages, ¥adigorithm p6] always

performs worse, compared to our algorithm.

2.3 Background

2.3.1 System Model

A distributed computation consists 8f sequential processes denoted®y Py, Ps, - - -,
and Py_; running concurrently on a set of computers in the networloc®sses do not
share a global memory or a global physical clock. Messagaas the only way for pro-
cesses to communicate with one another. The computati@yehronous: each process
evolves at its own speed and messages are transmitted thcougmunication channels,
whose transmission delays are finite but arbitrary. Chanawe assumed to be FIFO and
the computation is assumed to be piecewise-determiniE8i2[l]. Elnozahy et al. 19|
present an excellent survey of the state of the art in cheokpg and recovery. Messages
generated by the underlying distributed computation vélt&ferred to aapplication mes-
sages Explicit control messages generated by checkpointingratgn will be referred to
ascontrol messagedn our algorithm, limited amount of control messages aneegated

for the collection of consistent global checkpoint, onlyemmecessary.
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2.3.2 Consistent Global Checkpoints

The execution of a process is modeled by three types of evahis send event of a mes-
sages, the receive event of messages and internal eveptstakbs of processes depend on
one another due to interprocess communication. Lamploapgpened beforeelation B9

on events,—, is defined as the transitive closure of the union of two otletations:
2 = (2% U )t The % relation captures the order in which local events of a
process are executed. THeevent of any procesB, (denotect, ;) always executes before
the (i + 1)* eventie,; — ¢,,11. The— relation shows the relation between the send
and receive events of the same message:isfthe send event of a message arid the
corresponding receive event of the same messageqathén b [45,48].

A local checkpoint of a process is a recorded state of thegsocA checkpoint of a
process is considered as a local event of the process forutipege of determining the
existence of happened before relation among checkpoinisooksses. Each checkpoint
of a process is assigned a unique sequence number. The olasfprocessP, with
sequence numbeiis denoted by’ ;.

The send and the receive events of a mesddgee denoted respectively Bynd(M)
andreceive(M). So,send(M) — C,; if messageM was sent by procesB, before
taking the checkpoin@,, ;. Also, receive(M) — C,; if messagel was received and
processed byP, before taking the checkpoirdt, ;. send(M) —= receive(M) for any
messagé/. The set of events in a process that lie between two conseatlieckpoints is
called a checkpointing interval.

A global checkpoint of a distributed computation is a sett@akpoints containing one
checkpoint from each process involved in the distributadmatation. An orphan message
M with respect to a global checkpoint is a message whesgwve(M) event is recorded
in the global checkpoint but the correspondig.d()M ) event is not recorded. A global
checkpoint is said to be consistent if there is no orphan ageswith respect to that global

checkpoint. Figur.1shows two global checkpointg andS,. ClearlyS; is a consistent
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global checkpoint while5; is NOT a consistent global checkpoint sinkg is an orphan
message with respect 3.

Next, we present our algorithm.

S1 S2
R Checkpoiit ‘.Checkpoint
M 4 B
= M1 w Checkpoint I Checkpoint
Ms/
Checkpoin
P tl Checkpoin.‘..i Ms
P ."‘Checkpoint I Checkpoint
Figure 2.1: Global checkpoints
2.4 Algorithm

2.4.1 Notations

Following are the notations used in describing the algorigind its correctness proof.

e (), denotes the (permanent) local checkpoint takerPpylt is composed of two
parts — a tentative checkpoint?; ;, recording the state of the process and a set of

logged messagédsgSet; ,, associated with the checkpoint.

— CT,;, denotes the tentative checkpoint takenBywith checkpoint sequence
numberk. It is usually saved in memory first and then flushed to statolage
after recording the associated log, nameédy,Set; ,, or whenever there is no

contention for accessing stable storage.
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— logSet; , denotes the set containing all messages sent and receivedalfter
taking the tentative checkpoi6tZ; , and before the checkpoitt ;, is finalized.
We refer to the operation of flushing the tentative checkipamd the log of
messages to stable storagefiaslizing the tentative checkpoint. We explain

the steps taken for finalizing a tentative checkpoint inisa@.4.4
Thus, we have’; , = C'T; , U logSet, .

e C'FE;; denotes the event that represents the finalizing operaticmezkpointC; .
Therefore, all sending and/or receiving events of messagegSet; ,, happen before

CFE, . For any event of P;, we have

e i> Ci,k —e€ i) C’F’EIZJf (21)

e S, denotes the global checkpoint composed of checkpointsseiluence numbér

from each process. ThuS, = {C;,|i € {0,1,---, N — 1}}.
2.4.2 Basic ldea

The basic idea behind our algorithm is as follows: Any precean initiate taking a con-
sistent global checkpoint. A process accomplishes thisaling its state (called a tenta-
tive checkpoint) and then piggy-backing this informatiothweach application message it
sends after that. When a procésseceives a message from a proc£sdt comes to know
whetherP; has taken a tentative checkpoint as a result of its own cemsiglobal check-
point initiation or as a result of the initiation of some atlpeocess. WherP;, comes to
know about a new initiation of consistent global checkpatribkes a tentative checkpoint.
Each checkpoint taken is assigned a sequence number wiaok imore than its previous
checkpoint. After a process takes a tentative checkpaiogntinues logging all the mes-
sages sent and received in its local memory until it comesitovithat all other processes

have taken a tentative checkpoint corresponding to iteatitentative checkpoint. When
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a process comes to know that all the processes have taketaiiecheckpoint that cor-
responds to its own current tentative checkpoint, it flugtsesurrent tentative checkpoint
(if it has not already done so) and the associated message $t@ble storage. We call the
process of flushing a tentative checkpoint and its assatiagssage log into stable storage
as ‘Finalizing the Checkpoifit A process is not allowed to initiate a new consistent globa
checkpoint until it finalizes its current tentative checkpoA process, initially, starts in the
normalstatus. After a process takes a tentative checkpointatasthanges from normal
to tentative After a tentative checkpoint is finalized, its status clempback to normal.
The set of finalized checkpoints with a given sequence numbelenoted bys,,, forms a
consistent global checkpoint as proved in Theoggh Next, we illustrate the basic idea

behind our algorithm with an example.

An Example

Coo CToa
Rl ]

Cio CTis M4

o | a
M Me

N | a

.
i
.
| /
Czo M CT,, 4']: Ms
My
I

Cso CTss
[]

P3I ]

Figure 2.2: An example illustrating the basic idea behindadgorithm

For explaining the basic idea behind our algorithm, we usesfhace-time diagram of
a distributed computation consisting of four processesvsho Figure2.2 Py, P, P,

and P; are the four processes involved in the computation. Ihyitle status of each pro-
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cess immormaland their initial checkpoints, with sequence numbesire marked by solid
rectangular boxes in the figure. Suppd3einitiates consistent global checkpointing by
taking a tentative checkpoirtZ; ;. After taking checkpoint'7j ,, it changes its status
from normal to tentativeand starts logging in memory all messages sent and receyed b
it until it finalizes this checkpoint. Then?, sends a messag#, to P,. Upon receiv-
ing M,, P, notices thatF, has takenC'7; ;. Therefore,P; takes a tentative checkpoint
C'T;, after processing/, and P;’s status changes fromormalto tentative Similarly, P
and P; take tentative checkpointS7;; andCTj;; after receiving messaged, and M
respectively. P, knows that the status of, and P, is tentativebefore sending the mes-
sageMs;; P; piggy-backs this information witd/;. Therefore,P; knows that the status
of iy, P, and P; is tentativebefore sending the messagé,. Upon receivingMs, P,
knows that the status of all processeteistative At this point, P finalizes the checkpoint
with sequence numbdr by flushing the tentative checkpoi6tl;; (if it has not already
done so) and the set of logged messages, M} into the stable storage. And we have
Cy1 = CTyy U {Ms, Mg}. An “F” mark in the figure indicates the event of finalizing the
current tentative checkpoint. After a process finalizegatdative checkpoint, its status
becomesiormal(after a process takes a tentative checkpoint, it is alloiwddke another
tentative checkpoint only after finalizing the already takentative checkpoint). Similarly,
P, finalizes its tentative checkpoint after the messaéfas received. When messagé; is
received,P; knows thatP; has finalized its checkpoint, which indicates that all peses
have taken a tentative checkpoint corresponding to iteatitentative checkpoint. There-
fore, P; finalizes its current tentative checkpoint. Note that should not be included in
the set of logged messages@h; since it was sent afteP; finalizedC; ;. Similarly, 7
finalizes the checkpoirt; ; upon receivingV/y without including)M, in the message log.

Now, a consistent global checkpoifit = {C 1, C1.1, C21, C51} has been recorded.
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Some Comments

In the example given above, there is only one initiator of¢dbesistent global checkpoint
Si. This is primarily to make the example easily understarelablowever, under our al-
gorithm, multiple processes can concurrently initiatesistent global checkpointing by
taking a tentative checkpoint. A problem with this basicoaitinm is that a tentative check-
point may never be finalized by a process if it does not red@iviicient) messages from
other processes. For example, messages susftyas/;, Mg and M, are needed for the
four processes to finalize their checkpoints in Figiz So, the basic checkpointing algo-
rithm will not work in the absence of sufficient number of dpation messages that help
each process know the status of every other process in aytimeshner. We call this as
a consistent global checkpoinbnvergenceroblem and explain in Sectica4.5how it

can be addressed by using limited number of control messelgess necessary. Next, we

introduce the data structures needed for presenting the dgsrithm.

2.4.3 Data Structures

Each proces#; maintains the following data structures.

1. esn;: An integer variable containing the sequence number of tineent checkpoint
of processP;. The checkpoint representing the initial stateRphas sequence num-
ber0. P, setscsn; to 0 initially. csn; is incremented by one when a new tentative

checkpoint is taken.

2. stat;: A variable representing the current status of pro¢es3 he status of a process
can betentativeor normal The status of a proceds is updated as followsP;’s
status is set tmormal initially. P;'s status changes tentativeimmediately after
P, takes a tentative checkpoint. Aftét knows that the status of all processes is
tentative(through the information piggy-backed on the applicatioessages)p;

sets its status back tmrmalafter finalizing its current tentative checkpoint.
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3. logSet;: The set of messages loggedratfter it takes a tentative checkpoint. When
stat; is set totentative P; setslogSet; to empty and starts logging messages sent and
received byP; into logSet;. Thus,logSet; contains messages sent and received by
P; after a tentative checkpoint is taken and before that chanks finalized. When
the status of the process changes friemtativeto normal the tentative checkpoint

and the correspondinggSet; are flushed to the stable storage.

4. tentSet;. Thetentative process sahaintained atP;. Whenstat; is set tonormal
tentSet; is set to empty. Whel®; takes a tentative checkpoin®; setstentSet; to
{P;}. Upon receiving a messagg; setstentSet; to be the union ofentSet; and
thetentative process seiggy-backed in the message. Thus, this set contains the set

of processes that have taken a tentative checkpoint, tonibwlkdge ofP;.

5. allPSet: This is the set of all processes, namél¥, P, -+, Py_1}.

2.4.4 The Checkpointing Algorithm

We assume that each process takes an initial checkpoimsenming the initial state of the
process. The sequence number of the initial checkpoint i® e Moreover, no process is

allowed to take a new checkpoint when its statusdative
Consistent Global Checkpointing Initiation

Any process whose statusnsrmalcan take a new tentative checkpoint, thereby initiating
consistent global checkpointing. When a procBsskes a tentative checkpoint, it changes
its status frommormalto tentative increases the checkpoint sequence numberby one
and assigns it as the sequence number for the tentativebiatksetdogSet; to empty,
and initializestentSet; to { P;}. At any time,tentSet; is the set of all processes that have
taken a tentative checkpoint corresponding to the curesrtative checkpoint of;, to the

knowledge ofP;. After P, takes a tentative checkpoint, it starts logging ikig@Set; all the
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messages sent and received until its status changes backwal C'sn; andtentSet; are

piggy-backed with each application message.
Sending Messages

Each proces®; piggy-backs with each application message the currenew@lesn;, stat;
andtentSet;. The value ofcsn;, piggy-backed with messages, helps the receiver deter-
mine if the sender took a new tentative checkpoint, theraliiating a concurrent or new
consistent global checkpoint collection. These valuegyigacked with a message

are denoted bw/.csn, M.stat and M.tentSet respectively. A process receiving message
M uses this piggy-backed information to find out whether it iseav consistent global
checkpoint collection initiation or a concurrent globakckpoint initiation; it also comes

to know the processes that have already taken a tentatie&pbiat corresponding to this
initiation.

Receiving Messages

Under our algorithm, each process can take a tentative pbedkindependently and con-
currently. Once a process comes to know that all the othexregses have taken tentative
checkpoints corresponding to its most recent tentativelgi@nt (through a message re-
ceived from a process), it finalizes the tentative checkp(®ection2.4.4 explains the
procedure of finalizing a tentative checkpoint). After fimalg its most recent tentative
checkpoinitC; ., processP; can take the next tentative checkpaing.., before every other
process has finalized the tentative checkpoint correspgridi’; ;.. In such situations, i,
sends a messagé after takingC; .1 andM is received by procesB; before it finalized
C; x, thenP; needs to finaliz€’; ;, first and then process the messageo prevent orphan
messages. Next, we describe how prodedsandles a messagé received from process
P.

je

Case (1) M.stat = stat; = normal. In this case, no additional action needs to be taken

exceptprocessing/ because neithdr, nor P; is aware of any new consistent global
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checkpoint initiation.

Case (2) M.stat = stat; = tentative. In this case, botlP;, and P; have taken a new

tentative checkpoint concurrently. The following four sabes arise:

Subcase (a)M.csn < csn;. In this casep; has already taken and finalized a tenta-
tive checkpoint with sequence numbgtcsn at the time of receiving/ and P;
was not aware of this while sendirdd. Therefore, no additional action needs

to be taken except processing the message.

Subcase (b)M.csn = csn;. In this case,P, and P; have taken checkpoints that
belong to the same global checkpoByt,,.. In this case, first\/ is processed
and then in order to know how many processes have taken éverdiaeckpoint
that belongs to the global checkpoBt,,,, P, updatesentSet; to be the union
of tentSet; and M.tentSet. If the updatedientSet; equals toall PSet, P;
logs the message and then finalizes (Seidm4gives the detailed procedure
for finalizing a tentative checkpoint) its tentative cheakj since all processes
have taken a tentative checkpoint with the same sequenceeryne., tentative
checkpoints that belong to the global checkpaift,,) and sets its status to

normal (i.e. stat; = normal).

Subcase (c)M.csn = csn; + 1. In this caseP; finalized the checkpoint with se-
guence numbersn; before sending/ and also has taken a tentative checkpoint
with sequence numbeév/.csn. Therefore,P; knows that all processes already
took a tentative checkpoint that belongs to the global cpeitk S.,,,,. Recall
that a process is not allowed to take a new tentative cheokpatil it has fi-
nalized its current tentative checkpoint. This finalizes its current tentative
checkpoint with sequence numhsgr,; without including) in the message log
becauseV/ would be an orphan message with respect to the consistdmdlglo

checkpointS,,,,. Then, it processes the messdgeand initiates next consis-
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tent global checkpointing by taking a new tentative cheakipaith sequence

numberM.csn and also logs the messagé.

Subcase (d)M.csn > csn; + 1. In this caseP; has finalized the checkpoint with
sequence numbesn; + 1. SinceP; could have finalized that checkpoint only
after all other processes includirfg have taken a tentative checkpoint with
sequence numbesn; + 1, P, must have a checkpoint with sequence number
greater than or equal tesn; + 1. This is not possible becausen; is the
sequence number of the last tentative checkpoir?,0fSo, this case does not

arise. Thus, this case is not shown in the formal descriptfahe algorithm.

Case (3) M.stat = normal andstat; = tentative. In this case ;s latest checkpoint has
been finalized before sendidg and P, has taken a tentative checkpoint which is yet

to be finalized. The following three subcases arise:

Subcase (a)M.csn < csn;. In this case P, has already taken and finalized a ten-
tative checkpoint with sequence numb¥rcsn at the time of receiving!/.
Therefore, no further action needs to be taken in this casepéyrocessing the

message.

Subcase (b) M.csn = csn;. In this casep; has finalized taking the checkpoint with
sequence numbesn;. This meansP; knows that all processes have taken a
tentative checkpoint with sequence numéber,;. Hencep finalizes its current
tentative checkpoint without includindy/ in the message log (singd would
be an orphan message), changes its status baokrtoal and then processes

the message.

Subcase (c)M.csn > csn;. This meansP; has taken a new checkpoint with se-
guence numbeh/.csn > csn; and has finalized that checkpoint befarefi-
nalized the checkpoint with sequence number;. This is impossible because

a process cannot finalize a checkpoint with sequence numbem before
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other processes finalize their checkpoint with sequenceéoruid.csn — 1. So,

this case does not arise.

Case (4) M.stat = tentative andstat; = normal. This meansP;’s latest checkpoint
taken before sending/ has not been finalized while sending and P;’s latest
checkpoint has been finalized. In this casdé,is processed first and then the fol-

lowing actions are taken. The following three subcasegaris

Subcase (a)M.csn < csn;. In this caseP; has already taken and finalized a tenta-
tive checkpoint with sequence numb#r.csn at the time of receiving/. So,

the message is simply processed without taking any additextion.

Subcase (b) M.csn = csn;+1. Inthis caseP; has taken a new tentative checkpoint
about whichP; comes to know througld/. Therefore,P; takes a tentative
checkpoint with sequence numbgf.csn. The procedure for taking a new
tentative checkpoint is same as that in SecB8ah4 In addition to thatp; logs
the message and updates:.tSet; to be the union ofentSet;(= {P;}) and
M tentSet. Thus,P; getsP;'s knowledge about the processes that have taken

a tentative checkpoint with sequence number; + 1.

Subcase (c)M.csn > csn; + 1. This case is similar tsubcase (dundercase (2)

and does not arise.

Finalizing a Tentative Checkpoint that belongs to a Consigint Global Checkpoint
with a Given Sequence Number

If the status of a process; is tentativeand it knows through the messages received from
other processes that the status of all other processev@u/vl the computation are tenta-
tive (i.e., tentSet; = all PSet), it flushes its current tentative checkpoint (the mostméce
tentative checkpoint taken), if it has not already done ad,aso the associated message
log logSet; into the stable storage and makes it permanent. Note thatmitative check-

point can be flushed to stable storage any time before finglitie tentative checkpoint.
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However, the message log associated with the tentativkpbet needs to be flushed as
soon as a process comes to know that all other processesdiared tentative check-
point corresponding to its latest checkpoilhe tentative checkpoint together with the
message log stored is called a checkpoint of the process andsi assigned the same
sequence number as the tentative checkpoint storedCheckpoints with same sequence
number from all the processes form a consistent global gweok as proved in Theo-
rem2.2

Formal description of the basic checkpointing algorithrgii@n in Figure2.3.

2.4.5 Optimizations

A Convergence Problem

As we noted earlier, the basic checkpointing algorithm emé=d in the previous section
may not converge if not enough messages are exchanged ammregges. To address
this problem, we present a mechanism that utilizes contedsages to expedite conver-
gence when necessary. So, control messages are used origniftive checkpoint has
not been finalized within a predetermined period of time. ha following, we discuss a
mechanism to introduce limited amount of control messagegpedite convergence when
necessary. We introduce three type of control messagesckmbiat begin CK_BGN)
message, checkpoint requeSK(REQ and checkpoint enddK_END) messages. A pro-
cessP; sets a timer when it takes a tentative checkpoink, ifloes not finalize its tentative
checkpoint before the timer expires, it send3kaBGNmessage to a pre-specified process,
say F,. Upon receiving the message, takes a tentative checkpoint if it has not yet taken
and then sends @K_REQ message td”, P; does the same and sends ititg etc. and
finally CK_REQreaches back t&,,. After P, receives the message back, it seG#SEND
message to all the processes. When a process receivVEKIBEAID message, it finalizes
its local tentative checkpoint with the sequence numbetaioned in theCK_END message

if it has not already finalized it. It ignores the message lifas already finalized. Control
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When P; starts
csn; = 0; stat; = normal, /* Initialization */

Procedure: takeTentativeCheckpoint(i: integer)

csng; = csn; + 1, stat; = tentative;
tentSet; = {P;}; /* Include the process id in the set */
logSet; = ©; /* Initialize the message log to empty set */

Take tentative checkpoi®'T;, con,;

When P; starts to take a checkpoint
takeTentativeCheckpoin((i);

When P; sends a messaga/ to P;
M.csn = csng; /* Piggy-back current value afsn;, stat;, andtentSet; with the message */
M .stat = stat;;
M .tentSet = tentSet;;
if stat; == tentative thenlogSet; = logSet; U {M};

Send(M),
When P; receives a messag&/ from P;
if stat; == normal then
Process\/;
if M.stat == tentative then
if M.csn == csn; + 1then [* Pj has initiated a new consistent global checkpoint */
takeTentativeCheckpoin(i);
logSet; = logSet; U {M}; /* Log the received message */
tentSet; = M.tentSet U tentSet;;
else [* stat; == tentative */
logSet; = logSet; U {M}; /* Log the received message */
if M.stat == normal then
if M.csn == csn; then * Pj has finalized the checkpoitt; csn,; */
FlushlogSet; — {M} andCT; ..n, to the stable storage; I* P; finalizes its checkpoin®; csrn, */
stat; = normal,
Process\/;
else I* M.stat == tentative */
if M.csn == csn; then [* Pj has taken the checkpoiftT) ..., before sending the message */
Process\/;
tentSet; = M.tentSet U tentSet;;
if tentSet; == allPSet then [* Each processP;, has already takeilC'Ty, csp,; */

stat; = normal;
FlushiogSet; andCT; .sn, to the stable storage;
else if M.csn == csn; + 1 then [* Pj has finalized”'; ., and took a new tentative checkpoint after that */
stat; = normal, *So, P; finalizesC; s, , excludes\ from the log and takes a new tentative checkpoint */
FlushlogSet; — {M} andCT; .sp, to the stable storage;
Process\/;
takeTentativeCheckpoin(i);
logSet; = logSet; U {M};
tentSet; = M.tentSet U tentSet;;

Figure 2.3: The Basic Checkpointing Algorithm
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messages are not sent if each global checkpoint can be &édalithin the timeout interval.
Thetentative process sean be used to further reduce the number of control messages a

follows:

Case (1) Limiting the number oCK_BGNmessages. As we know, of&_BGNmessage
is enough to notifyF, to initiate CK_ REQmessages for each global checkpoint. In
the method described above every process that times ot €&nBGNto F,. Such
redundant messages can be reduced using the informatitairoeohintentative pro-
cess setSuppose it is time foP; to send &CK_ BGNmessage t@,. Before sending
the message, it checks if there is a procBsthat belongs tagentSet; andj is less
thani. If P; exists,P; does nothing since it knows th&t or some other process with
process id smaller thahwill send aCK_BGNmessage t@,. Otherwise,P; sends a
CK_BGNmessage t@,. Clearly, this method reduces the numbeCéf BGN mes-
sages. However, it introduces a new problem, namely, theegsowith lower process
id may have finalized the checkpoint already and has not exggthany message af-
terwards. This wayP; may not be able to finalize the checkpoint. This problem can
be solved by requiring?, always broadcast@K_END message to all other processes

when it finalizes a checkpoint.

Case (2) ReducingCK_REQmessages. Under the above approach, every process needs to
forward theCK_REQmessage once. However, the numbeCEf REQmessages can
be further reduced by the following method. Suppose it itfor P; to forward the
message. If it has finalized this checkpoint, it forwardsrtiessage tad”, directly.

Otherwise P, looks for a proces#’; for which the following condition holds.
(j > 1) AND (P; ¢ tentSet;) AND (Vk € {z|i < z < j}, P, € tentSet;)

If such a proces#; is found, P, forwards the message 1 because all processes
with process ids greater tharand less than have already taken a tentative check-

point.andthere s no need to ask them to take it again. Otkenwll processes with
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process ids greater tharhave already taken a tentative checkpoint. Therefbye,

forwards the message 16 directly.

Figure2.4gives the formal description of how control messages carsbd to augment
the basic algorithm to help convergence. In this weigé to denote a control message. A
C' M has two fields, namelyypeandcsn CM.typecan have one of the three values, namely,
CK_.BGN CK_REQor CK_END. CM.csnis the sequence number of the current tentative
checkpoint of the sender when it sends the control mesSadgeC M (atype, acsn) refers
to the control messagéM with C'M.type = atype andC'M.csn = acsn. For example,
CM(CK_BGN, 3) refers to a control messa@X BGNwith csn = 3 piggy-backed with
it.

A timer is used by each process to determine when to sendotomtssages as follows:

A process sets a timer when it takes a tentative checkpoirtienthe timer expires, it
initiates sending a control messagé/. The timer is canceled when a process finalizes the
checkpoint or it receives @M with sequence number equal to that of its current tentative
checkpoint.

We illustrate how control messages help in convergenceamtixample shown in Fig-
ure2.5. SupposeP; takes a tentative checkpoi@tl; ; first and sends a messagig to P.
Upon receivingM,, P, takes a tentative checkpoi6tl, ;. When the timer set fo€'7 ;
expires,P; sends e&CK_ BGN message({ K_BGN;) to P, (P, does not send EK_BGN
message since it knows that will send such message 1§). Upon receiving”' K _BG Ny,

P, takes a tentative checkpointl}; and sends £K_REQ message’' K _RE(), to P;.
Thereafter,P, sends aCK_REQ message’' K _RE(), to P; since it knows thatP, has
already takerCT5 ;. Finally, theCK_.REQmessage’ K _REQ; returns toF,. Now, Fy
knows that all processes have already taken a tentativégobiext with sequence number
1. Therefore, it finalizes its current tentative checkpoimmd d#roadcasts €K_END mes-
sage to every other process and flushes logged applicatissages and'7; ; to the stable

storage.. Upon receiving K_END, P;, P, and P; flush their logged messages and ten-
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When the timer for finalizing the tentative checkpoint on P; expires

if : == 0 then [* Py initiates CK_REQmessages directly without sendin€&_BGN message */
forwardCheckpointRequesi( Py, C M);

else Fi=1,3,---,orN — 1%
for each Py, € tentSet; do

if & < ithenreturn; I* Py, or other process with process number less thanill send CK_BGN message td% */
SendCM(CK_BGN, csn;) to Py; /* SendingCK_BGN message td% */
Procedure: forwardCheckpointRequest®; , C' M)
ifi==N — 1thenk=0; [* Pn_4 forwardsCK_REQmessage td directly */
else I* P; looks for process?; such that the status d?; 1, P12, - -, and P;_ is tentative */

fork=:i+1to N —1do
if Py ¢ tentSet,; then break;

if P € tentSet; thenk = 0; /* The status of all processes with process number greater ilis tentative*/
SendCM (CK_REQ, csn;) t0 Py;

When P; receivesC'M from P;

if CM.csn == csn; + 1 then

if stat; == tentative then
FlushiogSet; andCT; .sn, to the stable storage;

takeTentativeCheckpoin(i);
forwardCheckpointRequesi{P; , C M),

else ifC' M.csn == csn; then
if CM.type == CK_BGN then

if stat; == tentative then
if CM(CK_REQ,csn;) has been serthen return; /* Send theCK_REQ message at most once */
forwardCheckpointRequesi{ P; , C M);

else fCM(CK_END,csn;) has not been settten I* Py has finished taking’; csn,; */

SendCM(CK_END,csn;)t0o P1, P, ---,andPy_1;
else ifC' M .type == CK_REQ then
if i == 0then [* Py initiates CK_LEND if necessary */
if CM(CK_END,csn;) has been serthen return;
SendCM(CK_END,csn;)t0o P1, P, ---,andPy_1;
if stat; == tentative then
stat; = normal,
FlushiogSet; andCT; .5, to the stable storage;
else forwardCheckpointRequestr; , C M),

else ifstat; == tentative then I* CM.type == CK_END *|
stat; = normal,
FlushiogSet; andCT; .sn, to the stable storage;

Figure 2.4: Augmenting the Basic Algorithm with Control Meges to Speed up Conver-
gence

tative checkpoints with sequence numhbeaespectively. This way, all processes finalize
the checkpoints with sequence numbeand return tonormalstatus in finite time. Without
these control messages, the original algorithm does notecge in this example. Although
P5; sends out messages suchldsand Mg, it does not receive any message. Thereféxe,
is unable to obtain the status information of other procesaed hencé’; can not finalize

its tentative checkpoin®'T; ; without the help of control messages.
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Figure 2.5: An example illustrating the use of control mgssan the algorithm

2.4.6 Correctness Proof

We refer to the checkpointing algorithm with control messags the generalized check-

pointing algorithm. With this definition, we have Theor@m.

Theorem 2.1 The generalized checkpointing algorithm converges, atéier a process
takes a tentative checkpoint with a given sequence nunbgrevery process eventually

finalizes a checkpoint with sequence number.

Proof. We prove this by contradiction. Suppose the generalizedlgiointing algo-
rithm does not converge. In other words, there is at leastpooeess, say’;, that took a
tentative checkpoin®'T; ,, but never finalized the checkpoi@t ;..

Depending upon why’, takesCT; ;, the following two cases arise.

Case (1) P, takesC'T; ;, because it receives a messagel (C K _REQ), k) from a process
P;. Upon receiving such a messadge,needs to forward the message to a process
P, and assure that all processes with process number greaterdhd less thah
have already taken a tentative checkpoint with sequencdeartim This is repeated

until the message returns 1§ (Py_; forwards the message 1@ or some process
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P; ( < N — 1) forwards it toF, directly sinceP; knows that all processes with
process number greater thahave taken a tentative checkpoint with sequence num-
ber k). OnceF, receives the message, it finaliz€s, and broadcasts a message
CM(CK_END,kE) to all other processes. Upon receiving this message, each pr
cess finalizes its tentative checkpoint with sequence nurlifeit has not already

done so. In particula; finalizesC; ;, which is a contradiction to our assumption.

Case (2) P, takesC'T; ;, due to other reasons. Then a timer is set whéh, is taken
at P,. If the timer is canceled due to receivingGK_REQ or CK_END message
with sequence numbek, ) has initiated a messageéM (CK_REQ, k). Other-
wise, P; or some process with process number smaller thanl send a message
CM(CK_BGN, k) to P,. Therefore, P, will receive at least on€K_BGNmessage
with sequence numbét ThenF, initiates the process of forwardif@K_ REQmes-
sages. Similar t€ase(1) P; finalizes the checkpoird; ;, which is a contradiction

to our assumption.

Hence the theorentl

Theorem 2.2 For eachk, the setS, = {C;x|i € 0,1,---, N — 1} is a consistent global

checkpoint.

Proof. We prove this by contradiction. SuppaSegis not consistent. Then, there exists
a messagé/, sent fromP; to P; (for somei,j € {0,1,---,N — 1},7 # j), such that
Cir — send(M) AN D receive(M) == C, .

Depending on the receiving time of the messaggethe following two cases arise.

Case (1) receive(M) —= CT;,, (@). SinceC;, — send(M), CFE;;, — send(M)
(b). SinceP, has finalized”; ;,, P, has known that each proceBshas taken tentative
checkpointCT; .. Therefore,CT;, — CFE;,; (c). From (a), (b) and (c), we

hb

havereceive(M) - CT;) — CFE;;, — send(M), i.e., receive(M) —

sendiM)ma-contradiction.
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Case (2) CTj, — receive(M) - CFE, (a). Similar toCase (1) we haveC' F E; . —
send(M). Upon receiving)/, P; knows thatP; has finalized the checkpoidt,; .
Therefore, it knows that all other processes have takentattesmcheckpoint with se-
quence numbel. Based on this informatiorF) finalizes the checkpoirt; , not in-
cluding messagé/ in the checkpoint. Therefore, we hatd'E 5 receive(M)

(b). From (a) and (b) we haveceive(M) —= receive(M) which is a contradiction.

Hence the theorent

2.4.7 Recovery Algorithm

In this section, we present a recovery algorithm based onhtbekpointing algorithm. We

make the following assumption for the recovery algorithm.

e At most one process fails at any given time. No other procasuntil the recovery

due to a failed process is complete.

We need to add the following data structures to the checkipgialgorithm presented

in Section.4.4and2.4.5

e Each proces®,; has a variable sn,, initialized to 0, to keep track of the total num-
ber of times recovery took place. Each timeinitiates recovery, this variable is

incremented by 1.
Informal Description of the Recovery Algorithm

When a process; fails, it incrementssn; by 1 and send®0O LLBAC K (rsn;, csn;) mes-
sage to all the processes; hese,; represents the sequence number of the latest finalized
checkpoint of the proced3. When a process; receivesROLLBACK (rsn;, csn;) mes-
sage from procesB,, it finalizes the checkpoint with sequence numbst; if it has not
already done so, and then se@d&TOROLLBACK (rsn;, csn;) to P;. After a process
sendsOKTOROLLBACK message, it blocks (i.e., it neither sends/receives anij-app

cation.messagehordoes any local computation). AfteeceiveSOKTOROLLBACK
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reply from all the processes, it sen@$) N FIRM ROLLBACK (rsn;, csn;) message.
After a process’; receivesCON FIRM ROLLBACK (rsn;, csn;) message, it retrieves
the finalized checkpoint’ with sequence numbesn;, rolls back to the tentative check-
point with sequence numbesn; stored inC', and replays the messages in the log associated
with C' and then sendBOLLBACK FINISHED(rsn;, csn;) message t@; and blocks.
After P; receivesROLLBACKFINISHED(rsn;,csn;) from all processes, it sends
PROCEED(rsn;, csn;) message to all the processes. Upon receivingAR&OCEE D
message, each process resumes its computation normally.

Formal description of the recovery algorithm is presenteigure2.6.

When P; fails and initiates recovery process
rsn; = rsn; + 1;
SendsROLLBACK (rsn;, csn;) to all processes; Hsn; is the sequence number of the latest finalized checkpoif} of

When P; receivesROLLBACK (rsn;, csn;) from P;
if rsn; < rsn; then// this is a new recovery initiation
TSN = TSN;;
Finalizes the tentative checkpoint with sequence numbey
if it has not already done so;
SendsO KTOROLLBACK (rsn;, csn;) reply to P;;
Blocks;

After P; receivesOKTOROLLBACK (rsn;, csn;) from all processes
SendsCONFIRM ROLLBACK (rsn;, csn;) to all processes;

When P; receivesCONFIRM ROLLBACK (rsn;, csn;) from P;
Finds the finalized checkpoiidt with sequence numbesn;;
Rolls back to the tentative checkpoint contained’in
Replays the messages in the message log associated'with
SendsROLLBACKFINISHED (rsn;,csn;) to P;;

Blocks;

After P; receivesROLLBACKFINISHED (rsn;,csn;) from all processes;
SendsPROCEE D(rsn;, csn;) to all processes;

When P; receivesPROCEED(rsn;, csn;)
P; resumes computation;

Figure 2.6: Recovery algorithm

Correctness of the Recovery Algorithm

A process finalizes its tentative checkpoint with a givenusege number only after it
comes to know that all the other processes have taken tmeatisee checkpoints with the

same sequence number. When a process fails, all procefisesckoto the checkpoint with
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the same sequence number. Note that a checkpoint of a pramesists of the saved state
of the process (tentative checkpoint) and the log of messaget and received after the
tentative checkpoint was taken and before the tentativekgoint was finalized. The fact
that the checkpoints of all the processes with the same sequrimber forms a consistent
global checkpoint has been proved in Sectba.6 Thus rolling back the processes to
checkpoints with same sequence number takes the state pfdbesses to a state repre-
sented by a consistent global checkpoint. However, mesdagedue to rollback such as
those whose receive event was undone while the corresppsédimd event has not been
undone are not taken care of. They can be handled using sefinamber and message
logging. Moreover, we do not discuss ways for handling coreeu failures. However,
methods similar to the ones used #¥] can be used for handling concurrent failures as
well as handling lost messages, duplicate messages arahsittmessages during recov-

ery.

2.5 Performance Evaluation

In this section, we present the performance evaluation ofatgorithm. We denote our
algorithm as OCML (Optimistic Checkpointing and Messaggdiag approach) for short.
We evaluated our algorithm with respect to the following @gpects: 1) under what sce-
narios our algorithm converges without using additionadtoal messages and what is the
overhead induced by the control messages; 2) how doesdarpedompared to Vaidya’s al-
gorithm [66], which we refer to as Vaidy&tagger. The comparison focuses on the latency

and network contention for accessing stable storage.

2.5.1 Simulation Model

We consider distributed computations running in an envirent that has the following

features.
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Network environment. All processes run on nodes in a local area network (LAN).

We assume that the average end-to-end message delay isseooitids.

Clock drift . We assume that the maximum drift of local clocks at varidtesdss

100 milliseconds per hour.

Simulation time. It is set to 100 minutes.

Checkpoint initiation. We divide the simulation time into 10-minute intervals.
These intervals are called checkpoint intervals. Thush gaocess has 10 check-
point intervals during its life time. Each process choosestime to take tentative
checkpoints randomly in each interval. When control message used for conver-
gence, we set the value of timeout for finalizing a checkpuride 5 minutes. That
is, a process initiates sending control messages if it doegsimalize its tentative

checkpoint in 5 minutes.

e Communication model We simulated under two types of Checkpoint and Commu-

nication Patterns (CCPAT), namely, RANDOM and GROUP, dbscrbelow:

— RANDOM Communication Pattern: Each proces®; € Py, Py, -+, Py_1 IS
able to send an application message to any other prétess, P, - - -, Py_;
andP; # P;. The destination of each messagés randomly chosen. Messages

sent are uniformly distributed during the entire simulatimme of a process.

— GROUP Communication Pattern Each proces®, € P, P, - - -, Py_; sends/receives
messages only to/from its two neighbor proces3es;) yoq v ANA L4 1) mod N -
This basically means that processes are logically arramgading and each
process sends messages only to its two neighbors.
We choose these two CCPATs mainly because they are repaigesif many
long-running, compute-intensive applicatio@2][ For example, in the imple-

mentation of Gaussian elimination, in each iteration, &@ss receives a row
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of the matrix from its predecessor and sends the results obiputation to its
successor. Its communication model among processes iatfit®ur GROUP
Communication Pattern. Moreover, these two models have begarded as
two extreme representatives for distributed applicatiarf&7]. So we ran our
simulations under these two extreme models to evaluateettiermance of our
algorithm. In all the simulation runs, we varied the rate @fssages sent per
second by each process from 0.01 to 0.40, on average. Ouiggtmaktudy
not only the number of control messages needed under spgarsaunication
pattern but also the network contention for accessingesttblage under dense

communication pattern.

2.5.2 Simulation Results

In this section, we first present our simulation results réiga (i) under what scenarios our
algorithm converges without using additional control naggs and (ii) what is the overhead
induced by the control messages. We also evaluate the nwhberssages logged for the
purpose of determining consistent global checkpoint. TWwercompare the performance

of our algorithm with the algorithm of Vaidya.

1. OCML with control messages vs. OCML without control message

We evaluated the performance of our algorithm with contrelseages and with-
out control messages under the RANDOM communication motlég. simulated
a distributed computation involving 20 processes. Fidui#a) shows the number
of finalized global checkpoints for various message padtelaeally, our algorithm
should take 10 consistent global checkpoints since thelatioo time is 100 minutes
and the checkpoint interval is 10 minutes. Irrespectivénefrate at which messages
are exchanged, our algorithm takes exactly 10 consistebegtheckpoints if con-
trol messages are used. This verifies that the use of conésdages helps in conver-

gence,.especially when application messages are exchahgddw rate. However,
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Figure 2.7: Statistics by varying number of messages sergqoend

without control messages, only 6 consistent global cheickpare finalized if each
process sends only 0.01 messages per second. This meapsoitedses have to
wait for a long time for finalizing a checkpoint. As the rateroéssages sent per
second by each process increases, our algorithm convengadyt it only requires

0.03 messages or more per second to converge without anptomssages.

Figure 2.7(b) shows the average amount of time (in seconds) neededKorgt a

consistent global checkpoint, this time being calculatechfthe time some process
initiates consistent global checkpointing to the time atoktall processes finalize
their tentative checkpoints belonging to this global clpeghit. The average time for

taking a consistent global checkpoint is a little more th@0 8econds if less than
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0.05 messages are sent by each process per second, in wégcbotdrol messages
are used. If more than 0.05 messages are sent by each precsgspnd, processes
finalize their tentative checkpoints before the timer eair Therefore, no control
messages is sentin this case. Figi#c) verifies this observation. We also note that
the number of control messages sent are less than 2 timesithigen of processes

even when only 0.01 messages are sent by each process p&il.seco

Figure2.7(d) shows the number of logged messages for each global pbietlat
each process. In the figure, the number of logged messagibefoase when no con-
trol message is sent does not change much as the rate of reessag per second
by each process increases. This also reveals the apprexmatber of messages
needed for the convergence of our algorithm under this conication model. Since
the logged messages contain messages sent and receiveti gr@sess, our algo-
rithm requires each process send only 6 to 9 messages péwpoiednterval for it

to converge when 20 processes are involved.

. Performance of our algorithm compared to Vaidya’s algorithm

Next, we present the performance analysis of our algorittengted as OCML) com-
pared to Vaidya's staggered checkpointing algoritb6} (denoted as Vaidy&tagger)
in this section. We choose Vaidya’s algorithm mainly beea(ds it represents the
staggered checkpointing algorithms which attempt to pretwo or more processes
take checkpoints at the same time in order to reduce coateftdr accessing stable
storage; (2) to our knowledge, it is the only algorithm thiest to stagger checkpoints
to prevent contention for accessing stable storage; (3gover, Vaidya’s notion of

“physical checkpointt message log= logical checkpoint” 66], is similar to our

notion of “tentative checkpoints message log- finalized checkpoint”.

We compare the performance of our algorithm with Vaidyagoathm [66], under

both RANDOM and GROUP communication models.

37

www.manaraa.com



First, we compare our algorithm with Vaidya’s algorithmkviespect to the average
number of checkpoints (note here checkpoints refer to physheckpoints under
Vaidya’s algorithm and tentative checkpoints under ouoatgm respectively) taken

at the same time by each process. Tébleshows the results as the rate of messages
sent per second by each process varies from 0.01 to 0.10e Saidya’s algorithm
successfully staggers all physical checkpoints, the gesmamber of physical check-
points taken at the same time under all cases for this aktgorére zero. However,
this goal has been achieved at the cost of large increaseeitkphint latency in
Vaidya’s algorithm 66]. On the other hand, although the average number of teatativ
checkpoints taken at the same time in our algorithm is nai,z@nce each process
is able to store the tentative checkpoint in memory first dmabse its convenient
time for writing the tentative checkpoints to stable steragjthe network file server,

it doesn’t incur any contention for stable storage in thegtve checkpointing phase

of our algorithm while at the same time decreasing the chackatency.

Table 2.1: Physical checkpoints taken by Vaidytagger vs. tentative checkpoints taken
by OCML

Average number of checkpoints taken at the same time in eace$s
# messages/Sec 0.01 002 003 004 005 006 007 008 009 O
OCML1? | 315 465 51 495 6.3 64 725 725 7.2 7
RANDOM | OCML2® | 4.8 46 465 53 6.3 6.4 725 725 7.2 7)
0
6

Vaidyef 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OCML1 | 415 625 85 815 79 77 795 715 73
GROUP OCML2 | 8.45 9 8.4 8.2 8.2 8.2 7.4 7.5 7.3 6.7
Vaidya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

ol

T I SNy

80CML algorithm without control messages

bOCML algorithm with control messages

“Vaidya Stagger algorithmd6]
Next, we compare the performance of our algorithm with Vai@yagger with re-
spect to the number of logged messages under both RANDOM B@IUEP commu-
nication models. Under the RANDOM communication model,ufe.7(d) shows
the number of logged messages under OCML with CtrIMessage®&ML without

CtriMessages. Figurea8(a) and2.8(c) show the performance results of our algo-

rithm.compared, to Vaidystagger under RANDOM and GROUP communication
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models respectively, as the rate of messages sent per seg@ath process varies
from 0.02 to 0.20. Figur@.8(d) shows the result under GROUP model, as the rate of
messages sent per second by each process varies from 0.20.té8 expected, un-
der both communication models, when the rate of messagepaesecond by each
process increases, our algorithm converges fast and dowsed control messages.
Under RANDOM model, as the rate of messages sent per secagathyprocess in-
creases, the number of logged messages in our algorithnvayskmaller than that
of Vaidya Stagger. Under the GROUP communication model, the numdegged
messages under our algorithm continues to be smaller tladotNaidyaStagger if
the rate of messages sent per second by each process ishargér08. Figur.8(b)
shows how the number of logged messages changes with reéspéet number of
processes involved in the computation under RANDOM modee fesults indicate
a linear increase in the number of logged messages in Vtygger with respect
to the number of processes. On the other hand, increase muthber of processes
has only slight impact on the number of logged messages irlgorithm, which

indicates that our algorithm is more scalable.

Finally, under both RANDOM and GROUP communication models, compare
our algorithm and Vaidy&tagger with respect to the contention for stable storage
at the network file server that arises due to storing loggessages. Figure®.9a)
and2.9(c) show the results under RANDOM and GROUP communicatiodetso
respectively, as the rate of messages sent per second byeamss varies from
0.02t0 0.20. Figur@.9(d) shows the result under GROUP communication model, as
the rate of messages sent per second by each process vame3. 20 to 0.40. Since

in the second phase of Vaidy&gtagger, each process takes its logical checkpoint by
logging messages on stable storage after receivingiirgermessage from the co-
ordinator, it means that the coordinator plays the ceatdlirole of synchronizing

the message-logging in each process and it may lead to a& gogit of failure. It
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Figure 2.8: Number of logged messages under OCML and Va&iggger

completely staggers the physical checkpoints, howeveteobion for access to sta-
ble storage still occurs while storing logged messagék |As a result, the number

of collisions due to logged messages in each process is the aa the number of
logical checkpoints taken at each process in Vai8yagger. However, in our al-
gorithm, under the RANDOM model, Figuiz9(a) shows the average number of
collisions due to logged messages is 3.6 without CtriIMessadnich is 64% less
than that of VaidyaStagger. Under the GROUP communication model, as shown
in Figure2.9(d), as the rate of messages sent by each process varies 2ano0
0.40 per second, the average number of collisions due tethggessage is 6.3 for

both OCML with CtrIMessages and OCML without CtriMessagesich is 37% less
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than that of VaidyaStagger. Figur@.9b) shows how the number of collisions due

to logged messages changes with respect to the number afgsexcinvolved in the

computation under RANDOM model. As expected, when the nurabprocesses

increases, the number of collisions due to logged messagies our algorithm only

has slight impact and it is at least 60% less than that of \ésdgigorithm.
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Figure 2.9: Number of collisions due to storing logged mgssaat the network file server
under OCML and VaidysStagger

Vaidya’s algorithm 66] successfully staggers all physical checkpoints so thabme

tention for stable storage occurs while storing physicat&points. However, it does

incur contention for stable storage when messages areddggés second phase.

Compared to Vaidysstagger, although the average number of tentative cheatgoi
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taken at the same time under our algorithm is not zero, it mib@scur any con-
tention for stable storage since each process is able t® stettentative checkpoint
in memory first and choose its convenient time for writing tdetative checkpoints
to stable storage at the network file server. For exampleedoas our simulation
results, we can choose to save the tentative checkpointtegeith its correspond-
ing logged messages at the same time when it is finalized bereahen there is no
contention for stable storage. In reducing contentiontable storage at the network
file server, our algorithm always performs better than Vai8yagger. And our algo-
rithm also has other desirable features such as low conessages (or even no con-
trol messages) and less checkpoint latency compared tya/&thgger algorithm.

Moreover, our algorithm is distributed whereas Vaidyaggoaithm is centralized.

2.6 Conclusion

In this chapter, we presented a hogeimmunication-inducecheckpointing algorithm that
makes every checkpoint belong to a consistent global cluéekpUnder this algorithm,
every process stores the tentative checkpoint in memotyaing then flushes it to stable
storage when there is no contention for accessing stabbggtor after finalizing the tenta-
tive checkpoint. Messages sent and received after a prtadessa tentative checkpoint are
logged into memory until the tentative checkpoint is finadizSince a tentative checkpoint
can be flushed to stable storage any time before finalizimgittention for stable network
storage that arises due to several processes storing thkpchets simultaneously is re-
duced/eliminated. Moreover, unlike existing communimatinduced checkpointing algo-
rithms, our algorithm, in general, does not force a procesake a checkpoint before pro-
cessing any received message in order to prevent useledgci@s. Thus, a process can
first process the received message and then take the chetKpais improves the response
time for messages. It also helps a process take the regatdrgduled basic checkpoints at

those times. If messages are not frequently exchanged apnoogsses, additional control
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messages may be required for the algorithm to collect ctamiglobal checkpoints in a
timely manner. We augmented the basic algorithm with comessages to speed up the
collection of consistent global checkpoints in a timely manfor applications in which
processes do not communicate frequently. We conductedferpemnce evaluation of the
algorithm and studied the overhead induced by the contrgksages which also helps in
determining when control messages are needed. We also oexrtha performance of our
algorithm with Vaidya’s algorithmg6]. In reducing the contention for stable storage at
the network file server, our algorithm always performs béttan Vaidya'’s algorithm. Our
algorithm also has other desirable features such as thabsidsl low control messages

(or even no control messages) and less checkpoint latemegared to Vaidya'’s algorithm

algorithm.

Copyright© Qiangfeng Jiang 2013
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Chapter 3

Triangle-based Routing for Mobile ad
hoc Networks

3.1 Introduction

In recent years, mobile ad hoc (MANET) and wireless senstwarés (WSN) have at-
tracted a lot of attention. These networks are composed oilexnodes which commu-
nicate with each other wirelessly without the support of &rgd infrastructure. Unlike
traditional networks, mobile ad hoc and wireless sensovards do not have dedicated
routers. Each participating node acts as an end system hasagelouter. A node may di-
rectly communicate with its immediate neighbors withintitmasmission range. When two
nodes that are not within the transmission range of each ol to communicate with
each other, intermediate nodes act as routers to forwangbitieets. The design of efficient
routing algorithm for mobile ad hoc and wireless sensor néta/could be challenging due
to the infrastructureless nature.

Routing algorithms for mobile ad hoc and sensor networksheanlassified into two
categories: topology-based and position-based. Topdbaggd routing algorithms use the
information of the existing links in the network to route gats. Examples of topology-
based routing algorithms are AOD\6G], WRP [47], DSR [29], and DSDV B4]. In
topology-based routing algorithms, a node typically flooolste request message in the

network to find a route to a given destination node. Positiased routing algorithms use
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the geographic position information of nodes in the netwongerform packet forwarding.
Examples of position-based routing algorithms are Comfz4s MFR [63], Face-2 [],
GPSR B1], and AFR B8]

Under topology-based routing, a node wishing to establisbuée to a destination
broadcasts a route request message; each node receisnmgule request message re-
broadcasts this request once and this process is repeatedeby node in the network
except the destination node which upon receiving the ragaest broadcasts a route reply
and route reply travels along the path travelled by the roedeiest in the reverse direc-
tion and reaches the source which initiated the route réqiiess approach leads to great
number of redundant rebroadcasting of route request messhgdense networks, this du-
plication may result in high network contention, high netkimad, and high network delay.
To reduce the number of redundant messages, many algotidgwegeen developed. They
use different graph models such as unit disk grei 14], relative neighborhood graph
(RNG) [12,58,62,64], and dominating set®[70, 71]. However, these algorithms do not
work well for networks with mobile nodes.

With these considerations in mind, we propose an algoritrabreduces the redundant
rebroadcasting of route request messages. In the proplggaitan, we assume that all
nodes lie in the same plane and they all have the same trasismiangek. We divide the
plane into a number of equilateral triangular regions asvshino Figure3.1 Each triangular
region is assigned a unique identifier called Absolute Liooatdentifier (ALI). All nodes
in a triangular region know the identifier and exchange ihwliteir neighbors periodically.
This way, each node in the network has a knowledge about {h@ximate location of its
neighbors. Based on this, a ndde able to decide whether and when to forward a received
route request message. Therefore, redundant message®aily guppressed when the
knowledge is updated in a timely manner and used approfyigBefore explain this in
detail, we outline related works in Secti@m2 followed by the algorithm preliminaries in

Section3.4. We then present the algorithm in Sect®5. Simulation results are discussed
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in Section3.6. Section3.7 concludes this chapter.

hs

S1

hy

ha

h,

Figure 3.1: Plane divided into triangular regions

3.2 Related Works

Routing algorithms in mobile ad hoc networl& 15,18, 23, 29,51, 54-56, 67] have been
extensively studied in recent years. Many topology-basating algorithms for mobile ad
hoc and sensor networks use a simple broadcasting mech#rasiitoods the entire net-
work with route request messages, which leads to redundapagation of route-request
messages, contention, and collision. Well known algorgkoch as AODV36], DSR [29],
DSDV [54] and TORA B1]] use this flooding approach. Broch et &] ftudied the perfor-
mance of DSDV, TORA, DSR, and AODV. Their results show thatrtbuting overhead of
these algorithms increases quickly as the number of nodée inetwork increases.

A Dynamic MANET On-demand (DYMO)45] routing algorithm, a descendant of
AODV and DSR, was proposed by Perkins et af][ which is suitable for sparse networks.
TBRPF b0l and OLSR [L5] are suitable for networks in which a large number of routes a
needed and for applications that can not tolerate the deleyalroute discovery. However,

TBRPF reports updates reactively when a link state chandle WLSR reports them
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periodically. Therefore, TBRPF and OLSR may not work welhgtworks where nodes
move quickly. In such a scenario, TBRPF may send a large nuofhgpdates into the
network and nodes may have too many outdated links in iter@lle if OLSR is used.

The Zone Routing Protocol (ZRP23J] uses a hybrid approach for maintaining routes.
Under this algorithm, each host proactively updates itgimgutable for all destinations
within its zone. For destinations outside its zone, a nodpleys a reactive approach to
find routes on demand.

Some routing algorithms use a connected dominatingésgtals a backbone network
to minimize the number of nodes that participate in forwagdioute-request packets, and
hence reduce overlapping route-request propagation. @ddintage of this approach is
that the selected “core” or “backbone” nodes may drain thattery quickly. A solution
to overcome this problem is to periodically change the sé&batkbone” nodes. However,
the complexity of computing an approximate minimal domimgset of a wireless network
(computing a truly minimal dominating set is known to be Nd?aplete) may result in high
overhead. Moreover, maintaining this dominating set mayiitarge overhead if nodes are
highly mobile.

Position-based routing algorithmd, b, 8, 27, 32, 35] have been proposed to limit the
propagation of redundant route-request messages durutg discovery. Unlike usual
greedy position-based algorithms, NAD¥{] takes both distance and link cost (measured
in terms of delay, power consumption, or other metrics) atoount in forwarding data
packets. The main drawback of position-based algorithntsasit requires every node
know the position of the destination to which it needs a rpwta@ich would require addi-
tional location service.

Other algorithms also try to reduce redundant propagafiooute request packetd9,
52,53]. Williams et al. p9] classify broadcasting techniques into simple floodingpability-
based 49| flooding, area-based4)] flooding, and neighbor knowledge-baséesP,[53]

flooding. Other algorithms use pruning methods such as gatipg and dominant pruning
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to minimize redundant propagation of packeéig b3].
The basic idea behind many of the position-based routingrigtgns @, 5, 8,27,32,35]

is to limit the search for the destination to a portion of tleéwork based on estimating the
location of the destination based its last known positioth @locity or with the help of a
location service. Extra overhead is incurred when the edion turns out to be incorrect.
These algorithms require each node in the network to knaswitsposition and the position
and velocity of every other node at some point in time. Thisrimation is not practical to
maintain in a real ad hoc network environment. Moreovereuse in the search range is
required to forward route-request packets, which can re@splopagating redundant route-
request messages. Our algorithm addresses both probleordy requires each node to
know the relative position of nodes in its neighborhood. Al@trying to establish a route

to a destination does not need to know the position or veladithe destination.

3.3 Basic ldea Behind Our Algorithm

Our aim is to reduce the redundant rebroadcasting of rogigest messages during route

discovery. To achieve this goal, we require:

e Each route request message carry the information about ndukgs have been al-

ready covered by the route request.
e Each node has its two-hop neighbor information.

With the above information, a node is able to make informedsilen regarding whether
or not to forward a received route request message. Howknese requirements are not
practical considering the message size and the overheaty/@avin obtaining two-hop

neighbor information. With these considerations, we regui

e Each route request message carry information about whieh laas already been

covered and
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e Each node has its one-hop neighbor information.

To accomplish this, we split the network area into triangtggions as shown in Figu®1,
we also present a method for assigning addresses to each toiaingular regions in Sec-

tion 3.4

3.4 Preliminaries

In this section, we present methods for assigning fixed alsasetlative address to triangu-
lar regions. For this, we introduce several terms and datatsires used in the algorithm.
They include Absolute Location Identifier (ALI), Relativeotation Identifier (RLI), and

bit vectors.

3.4.1 Absolute Location Identifier

We assume that the nodes move in a planar area. We divideaharrea into a number

of equilateral Triangular Areas (TAs) as shown in FigBreé We assign each TA a unique

identifier called Absolute Location Identifier (ALI). Two BAthat share a side make up a
rhombus. Without loss of generality, we only take into aciddhe rhombuses whose sides
are shown with solid line segments in Figi&d. We assign ALIs to TAs in two steps. We

first assign ALIs to rhombuses and then we assign ALIs to TA®8an the ALIs of the

rhombuses.
The ALI of a Rhombus

Given that all rhombuses are of same size and shape, theigatas of any one of the
vertices of a rhombus uniquely identifies the rhombus. Wethsecoordinates of the
left-bottom corner of a rhombus to identify the rhombus. Fatance, point uniquely
identifies the shaded rhombus in FigBe. Hereafter, we will identify a rhombus by
the coordinates of its left-bottom vertex. We next desctiteecoordinate system used for

identifying the vertices of rhombuses.
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Similar to rectangular Cartesian coordinate system, weshohe left-bottom corner
of one rhombus as origin (pointin Figure3.1). The X-axis is the horizontal line passing
through the origirv and the Y-axis is the slant line (which makes 60 degrees \WeghX-
axis) passing through the origin. With reference to theseadwes, any point in the plane
can be represented by an ordered pair of real numbetg.(We divide the network area
into rhombuses so that the coordinates of their verticeméggers as shown in Figuel
The coordinatess( i) assigned to the left bottom vertex of a rhombus is calledAihleof

the rhombus. Next, we discuss how we assign an ALI to a TA.
The ALl of a TA

A rhombus is split into two TAs by one of its diagonal linespsim as dotted lines in
Figure3.1 We assign ALls to each of the two TAs belonging to the rhomiiils ALI
(s, h) as follows. The ALlIs of the TAs belonging to the rhombus withl (s, h) are of
the form G, h,flag) where flag is 0 for the left TA and1 for the right TA. For example,
(—3,2,0)and (1, —1, 1) are the ALIs of TAsA and B in Figure3.1respectively.

Transformation from a Coordinate to an ALI

How to find the ALI of the rhombus that contains a given point?p@se the length of
each side of a TA is the transmission rangeand the location of a nodeis (z;,y,). Let
the point (, y) in the plane be the origin point. We show how nédsomputes the ALI
(s, h) of the TA in which it lies. Then, the two equations in Equat®.1 represent the
horizontal solid line and slant solid line bounding the rious containing the pointg, v;,)

in Figure3.1

V3Rh
Yo + 5

Yy
{ y = yo+V3(x—1x0— RS) (3.1)

Then the coordinates of the left bottom vertex of the rhomitgtaining the point

(zp, yp), Namely 6, h) are given by EquatioB.2
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Each rhombus is divided into two TAs by the slanted dotted.lilVe identify them

using a flag defined by Equati@?3. The TA on the left/right has the flag 6f 1.

flag = (V3(zp—x0) + 1o —yo — V3R(h+ 5 +1) > 0) (3.3)

This way, given the coordinates of a node with respect to thggno(xg, 1), any node
in a given TA is able to determine the ALI in which the TA liesilsnows the transmission
rangeR. Therefore, each node is able to compute the coordinatémdiltl of the TA in
which it lies. In the rest of this chapter, we refer the ALI afi@de to be the ALI of the TA

in which the node lies.
The Representation of an ALI

To reduce the overhead involved in exchanging informatiooud ALIs, we use 32-bit
integers to represent them. Figl#: shows how the three fields of an ALI are stored in a
32-bit integer.

31 27 23 19 15 11 7 3 10

‘ s ‘ h flag

Figure 3.2: Representation of an absolute location iden{iALI)

One might wonder if this representation of ALIs limits thetwerk area. However,
this is not the case for the following reasons. Suppose Hresinission rang& is 250
metersfn) and the origin is the center of the network. Clearly, thee2d x 2'° x 2 TAs
and the area of each TA k%ﬁ. Therefore, this representation is able to cover a network
area of size upta0, 781, 278m x 10, 781, 278m, which is large enough for mobile ad hoc

networks.
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3.4.2 Relative Location Identifiers

The bandwidth used for exchanging location informatiorhwigighbors may be high when
nodes use ALlIs to represent their physical locations. Ssppaode has neighbors that lie
in 16 different TAs. It has to use a message with length awer 4 bytes to let its neighbors
know which TAs contain its neighbors. Therefore, we definewa term Relative Location
Identifier (RLI) to identify neighboring TAs. We show how RdL_help in saving network

bandwidth for communication in Secti@4.5

S3 S S So S; S, S3 S4
he
30 13 14 15 16 17
he
29 12 3 .48/ 495 1 18
5
rh ',
. 4 . :
: 0 12
28 11 2 c" 16 19

27 /100/ 12/ 8%/ ;7%/ 20

/ 56 /1, 9 18/ 24 23 22 21

25

h

hs

Figure 3.3: Assigning RLTs to neighboring TAs

A RLI is a unique nonnegative integer assigned by a TA (Gay Figure3.3, to another
near TA. In this section, we describe how RLIs are assignefdg' to other TAs. First of
all, TA C picks the TA that lies in the same rhombus and assigns it a Rl dhen TAC

assigns RLIs to other TAs in two steps:

Step 1 Assign RLIs to rhombuses (the rhombus that containsCTAs excluded). We
first define a new term. The distance between two rhombusé® iméx distance
between the lines that are parallel to one of the sides antirgagh the centers of
the rhombuses respectively. For instance, the distaneeskatrhombus1, 3) and

(252)dS4times the height of a rhombus.
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Then, TAC puts the rhombuses into a number of groups based on theandesto
the rhombus that contains TA. Clearly, each group of the rhombuses forms a ring
of rhombuses. Each ring is assigned an integer that is thedmstance between the
rhombuses on the ring and the rhombus containing TAlivided by the height of a
rhombus. This way, the rings from the nearest to the furthestissigned numbers

1,2,3,-- - respectively. It is easy to see that thering contains3: rhombuses.

Finally, TA C counts rhombuses on thié clockwise ring one by one starting from
the rhombus{. — i, h¢ — i) where 6¢, h¢) is the ALI of the rhombus that contains
the TAC. After finishing counting, TAC assigns RLHi(i—1)+j to thej* rhombus

on thei* ring.

Step 2 Assign RLIs to TAs based on the RLIs of rhombuses. SupposRlthef a rhom-
bus isi. Then TAC assigns the left and right TAs in the rhombus with RLI- 1

and2i respectively.

Figure3.3shows how TAC assigns RLIs to the neighboring rhombuses and TAs. The
numbers in the larger font size are the RLIs assigned to thablises while the numbers
in the smaller font size are the RLIs assigned to the TAs. i§ie8A C' uniquely assigns
RLIs to TAs using consecutive integers starting from\e discuss why this is important

in saving network bandwidth for exchanging neighborhoddrmation in Sectior8.4.5

3.4.3 Transformation between ALIs and RLIs

RLIs are identifiers assigned by a TA (a node) to its neighigpiliAs. According to the
rules for assigning RLIs, different TAs (nodes) may assiiffeicent RLIS to the same TAs.
Therefore, a RLI needs its assigner to uniquely identify a RAls assigned to TAs are
relative to a TA but ALls are global identifiers of TAs. We giggquations for determining
ALI of a TA from its RLI relative to another TA and vice versa.

We first give the equations for transforming a RLI to an ALIppase a TAB (s, hs, flags)

assighs.its.neighboring TA (s4, hy, flagy) @ RLI of rli. The question becomes how to
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represent,, hy and flagy usingsy, hy, flag, andrii. If riiis 0, we have(sy, hq, flagy) =
(s, ho, ! flagy). Otherwise, more effort is needed to determine the ALIs. @ in Fig-
ure 3.3 aring (based on its definition given in Secti®di.2 of rhombuses has four (left,
top, right and bottom) wings. Let the left, top, right andtoat wings are th&", 1%,
2nd and 3™ wings respectively, and TAD lie in the £ rhombus on thg** wing of the
it" ring around the rhombus containing TA We give an example in Figui&3to show
how we use, j, andi here. Rhombu8/4,/20/24 (in the larger font) is the' /15t /37 /374
rhombus on left/top/right/botton®d{® /1! /24 /37%) wing on the2"d /17 /274 /27 ring. As
we showed in SectioB.4.2 thei' ring is made up o#i rhombuses. Thereforej(i —1) <
rli < i + 1), namely¥™H =) < < YHELE sincei > 0. We havei = [

sincei is also an integer angtHtL — vl — 1 Clearly, therli in the i ring

starts with4i(i — 1) + 1 and each wing hag rhombuses. Therefore, the wing number

j= L%J Similarly, k = [rli — 4i(i — 1) — 1] %(2i). Therefore, we have:

i = LM J (3.4)

24

= [rli —4i(i — 1) — 1] %(2i)
Since the ALI of the center rhombus of the ring ig,(:;) (obtained from the ALI of
TA B), we have:
(Sb—i, hb—i+]{3,( ) ), If]:0
(sp—i+k, hp+1, ( V%2), ifj=1
(sp+1i, hp+i—Fk, (rli+1)%2), if j=2
(sp+i—Fk, hy —1, ( )%2), if j =3

(84, ha, flaga)
(84, ha, flaga)
(Sa, ha, flaga)
(Sa, ha, flaga)

(3.5)

We are able to obtain the ALI of a TA given its RLI and the assitg1ALI using
Equation3.4 and 3.5. Next, we present how a TA determines RLIs from ALIs. This
guestion can be described as how to represent therRLdssigned by TAB to TA D
in terms of TAD’s ALI (sq, hy, flagy) and TA B’s ALI ( sy, hy, flagy). Again, let TA D

lie in the k£ rhombus on theg* wing of the i’ ring. Clearly the rhombus number is
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4i(i — 1) + 2ij + k + 1. Then we have:
rli = 8i(i — 1) + 4ij 4 2k + flagg + 1 (3.6)

Based on the definition of the ring and the rules for numbefiagd, we have:

1 = max (|8b — Sd| s |h,b — hdl)

(0, hd—hb—Fi) if Sp — Sq = |hb—hd| andhd—hb#i
(. k.) B (1, Sd—8b+i) if |8b—8d| < hg—hy andsd—sb#z’ (37)
I N (2, hb—hd-i-i) if Sq — Sp > |hb—hd| andhb—hd#i

(3, Sb—8d+’i) if |Sb—8d| < hy — hy andsb—sd#i

Thus, any TA is able to compute RLIs of its nearing TAs fromiitiAd.Is using Equa-

tion 3.6and3.7.

3.4.4 Notations

Before we further discuss the preliminaries and the allgorjtwe outline the notations used

in the description of the algorithm:
o T A, refers to the TA whose ALI is.
o TA,.q, refers to the TA in which node lies.
o TA; ; refers to the TA with RLI ofj assigned by A,.
o T'Aode,,; refertoT' A; ; where nodex lies inT'A;.

o NT A, refers to the set of TAs that share one or more verticesTith And NT'A; ;
refers to the set of TAs that share one or more vertices Wilhh,. For example,
NTAc (let C stand for an ALI) in Figure3.3 containsl"A¢co, TAco, - -+, TAc 7,
TAcqa1, TAcas, -+, andT Ac 6.

o NTA,p4e, aNANT A, 04, ; refer to NT'A; and NT'A; ; respectively where node
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e C,.q, refers to the set of TAs that contains one or more direct fighof node
a. SUpposd A, 4., contains nodes, a4, - - -, anda,,, and no others. Thefi 4

nodegq

refers toCode, U Crode,, U -+ U Crode,, - ThereforeCoze, € Cra

nodeq "

o Cry, refers toCry,, .. when noden lies inT'A;. Cra, is empty if no node lies in

TA;.

o Cry ; refers toCr 4, wherei is the ALI of T'A,o4e,, -

nodegq,,

3.4.5 Bit Vectors

So far, we have introduced two new terms, ALl and RLI. Like@bte and relative path
in file systems, an ALI uniquely specifies a group of nodes likah the same TA while
a RLI is a label assigned to neighboring TA. In the algorithve,employ ALIs and RLIs
to exchange information between neighbors. An ALI used i2-diBinteger while a RLI
could be a very small integer. As we mentioned earlier, warassthat the length of each
side of each TA is same the transmission range of the nodeshésn in Figure3.3, a
node inside TAC' may reach some nodes lying in the rhombuses ir2tiering but not
any ones ir8"¢ or beyond. Similarly, one hop neighbors of the node indAnay reach
some nodes lying in the rhnombuses in @& ring but not any ones in th¢" or beyond.
The greatest rhombus number in &€ /374 ring is 24,/48 and hence the greatest RLI of a
TA in the ring is48/96. Therefore, a node can never have a one-hop (two-hop) naighb
that lies in a TA whose RLI is greater thdf (96). Therefore, a 6-bit (7-bit) RLI is good
enough to specify which TAs form a node’s one-hop (two-hagyhbor(s). How does this
serve the algorithm? Before answering this question, wafliprdescribe bit vectors first.

A bit vector is essentially a vector of boolean values. Werftise it to represent a
set since it is optimized for space efficiency. Many set regméations require one byte or
more per element while a bit vector needs only one bit per etemA drawback of this
representation is that the bit vector could be huge if theeeadarge number of possible

elementsNext.we.explain how bit vector is used in the allyori
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Under the algorithm, a node is able to determine whether dtoéorward a route
request (RREQ) message and also determine the best timemarfothe message based
on approximate information about neighbors such as whichd@ktain one or more nodes
that already received or will receive the RREQ message. Badk needs to store the set
of TAs locally and update the set whenever a new copy of theesasssage is received.
When it is time for a nodé to forward the RREQ message, it takes the union of the stored
set of TAs and”,,.4., and piggybacks it with RREQ message. Based on the updated set
TAs, each node make its own decision regarding when to fahtvee RREQ message. We
encode the set of TAs using bit vectors to reduce the messagleaad.

To overcome the drawback of bit vectors, we need to make th&eu of candidate
elements as small as possible. ALIs are not good to idengiynents since there are too
many possible ALIs. This is why we defined RLIs. Because wenamee interested in
the coverage information about its one-hop neighbors, wel@ma 64-bit vector (2 32-
bit words) to transmit the set. As we mentioned earlier, fpbsdRLIS are a sequence of
nonnegative integers. Moreover, a node can not have a gnadighbor in a TA whose RLI
is greater thad8. Therefore, a 64-bit vector serves well for this purposee fdmaining
16 bits carry part of two-hop neighborhood information. &ese of this representation,
the RLI assigning function has to be a one-to-one map fromtdARLIs.

We limit the size of set transmitted from one node to anotbetit For example, a
node may receive many copies of the same route request nee§gegunion of the sets of
TAs carried by those copies is stored locally. When the neabédeés to forward a RREQ

message it piggybacks with this locally stored set with tRER message.

3.5 The Algorithm

In this section, we present the proposed algorithm. We fuline the drawbacks of some
of the existing topology-based routing algorithms. As wentismed earlier, routing al-

gorithms, such as AODVHg], DSR [29], and TORA E1], that simply flood RREQ mes-
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sage for route discovery are known to have high routing ceeth especially in dense
networks and hence do not scale well. Many papers have Ihaeddressed these prob-
lems by using various graph models, e.g. unit disk grdeh felative neighborhood graph
(RNG) [12,58,62], and dominating se§, 70, 71]. However, they also introduce new prob-
lems, e.g. they use too much bandwidth in exchanging neiginfarmation. Typically,
they employ heartbeat messages (a.k.a. hello messageshtmge neighbor information.
When two-hop neighbor information is needed for these #lyois, the size of heartbeat
messages is large in dense networks. Moreover, if nodes fasiyghe neighborhood in-
formation known through heartbeat messages becomes tbspliekly. Clearly, finding
new routes using obsolete neighborhood information irsgealgorithm complexity. The
problem of obsolete information is reduced somewhat whdy @me-hop neighborhood
information is exchanged. Moreover, these algorithms cay suppress a limited number
of redundant messages.

To solve these problems, we propose an algorithm that ssgpgseedundant route re-
guest messages. The proposed algorithm allows nodes torietewhether and when to
forward a received RREQ message based on its neighborhtmdhation and the infor-
mation piggybacked on the message. Under this algorithis réquired that a node has
information such as who are its one-hop neighbors, whatesie ALIs, and what are the
ALls of the TAs they can reach. It is not required that a nodewsthe exact locations of
its two-hop neighbors although it can derive a rough 'twghteighbor knowledge from
its exchanged one-hop information.

When a node initiates a route request, it sends RREQ mesgapacked with the set
of TAs it can reach. Upon receiving the message, the recki@rs which TAs have been
potentially covered by the RREQ message already; potgntialered means that there is
at least one node in each of the TAs that receives the mes#dgm a node receives mul-
tiple copies of the same RREQ message from different neirghlioe potentially covered

TA set is the union of the sets piggybacked on those messapesefore, a nodé knows
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which TAs in the setC74 may not have been covered. We refer to such set of TAs

nodep,

asNPCTA If NPCTA

node

nodey” , Is empty, node does not need to forward the message.

Otherwise, it starts a timer (We present a method for comgutie timeout value for the

timer in Section3.5.2. When the timer expires, it recomputes tN’C 4 - Nodeb

node

forwards the message only if the recomputé@Cr 4

node

\ is not empty. Unnecessary for-
warding of RREQ message is suppressed further by perforothmgy checks. We present
those additional checks in Secti8rb.2

We next discuss heartbeat messages, route discovery, atedmaintenance, step by
step. Then we present the performance evaluation resultsegbroposed algorithm in

Section3.6.

3.5.1 Heartbeat Messages

Heartbeat messages are a special type of messages senesypeoiddically. It is a com-
monly used technique for a node to tell its neighbors itaustat mobile ad hoc networks.
Upon receiving a heartbeat message, the receiver knowdsta the nodes lying within
its transmission range as well as other information piggibd in the message. In other-
words, heartbeat messages help the receiver get to knovinwwbites are its direct neigh-
bors. Senders typically piggyback relevant informationlmheartbeat messages such that
the receivers have better knowledge about the sendersagsary. The proposed algorithm
employs this information.

A heartbeat message used in the proposed algorithm hasfiglese SrclD, ALI and
PCTA. The first field, SrclID, refers to the address of the sentlbe second field, ALI,
contains the ALI of the sender. The third field, PCTA, congdime set of TAs within the
transmission range of the sender that contain at least oe. ricets be the sender of a
heartbeat message. Théf,... equals to the field PCTA in the message.

Under the proposed algorithm, each node is required to senteartbeat messages

periodically, say everg seconds. A node may piggyback a heartbeat message onto other
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types of messages, such as data messages, route requesjaesestc. If a node has not
sent such messages within the predetermined time peri@@nds out a new heartbeat
message at the end of the time period.

Upon receiving a heartbeat message, a riogiedates its neighbor tabléV(/") accord-
ingly. N'T' maintains one entry per neighbai(). Each entry has four fields: NbrID, ALI,
PCTA, andts. NbrID and ALl refer to the neighbor’s address and ALI regpety. PCTA
equals taC,,.q,,, . Thets field stores the time at which nodeeceived the last heartbeat
message from neighbaibr. The following two cases arise when nddeeceives a heart-
beat message from node If there is no entry in neighbor table corresponding tmode
b inserts a new entry to NT and updates the time stamp field;r@ibe, nodeb updates
the ALI, PCTA and time stamp in the entry corresponding toened Nodeb scans its
neighbor table and removes outdated neighbor entry froneitghbor table before it sends
out (or piggybacks) a heartbeat message. A neighbor entgnisidered to be outdated if
its timestamp has not been updated during the last threeptmeds; i.e., a node assumes
that the corresponding neighbor is not within its transioissange. After initial rounds of
exchanging heartbeat messages, each node has the neaefssargition for running the
proposed algorithm.

We indicated earlier that neighbor location informatioreslmot work well in mobile
environment. How does this heartbeat mechanism work in snglfonment? Note that
this mechanism does not collect exact neighbor locatioormétion but the approximate
locations (TAsS) a node can reach. Network topology changasodes move. A node’s
PCTA remains relatively stable as long as related TAs combae or more nodes even
though nodes may move in/out those TAs. PCTA contains thernmdtion we rely on to
suppress redundant route request messages and find rouedtestination. Therefore, the
proposed algorithm works relatively stable in mobile eomment. We demonstrate this

when presenting simulation results in Sect®é
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3.5.2 Route Discovery

Similar to existing topology-based on-demand routing atgms, the proposed algorithm
uses route request messages for finding a route to the destimaroute discovery stage.
Unlike other algorithms, we piggyback a set of TAs onto eamlte request message. We
refer the set of TAs piggybacked of route request messagB€a8 which contains all

the TAs the route request message has reached, to the kig@ndéis sender. Here is a
PCTA example. Suppose nodénitiates a route request message which is then forwarded
by nodesh andc. Noded later receives the message from nédndc but not from node

a. Nodea piggybacks the message with,,.., before broadcasting it. Similarly, node
andc piggyback the message wih, 4, U Chode, aNAC, 04, U Chroae, respectively. Upon
receiving the message from both nddand ¢, noded knows the message has reached

Chodes U Crode, U Chode,- Therefore, nodé will piggyback the message with
PCTA = {Cnodea U Cnodeb U Cnodec U Cnoded}

in case it decides to forwards the message. The PCTA in theages forwarded by node
bandc areCo4e, U Choge, aNACh04e, U Croge, respectively. Clearly, a nodeis able to
make right decision on whether and when to forward a routeasigmessage by comparing
CT Anode, @nd the PCTA in the route request message. Nodees not need to forward the
message if all the TAs id'r4, . are present in the PCTA piggybacked on the message;
one exception would be when the destination of the routeegigmessage resides in the
same TA as node does. In this case, at least one node in the TA would need weafdr
the message to make sure that the destination receives gsagee

In some cases, information contained in the PCTA alone isuititient for suppressing
redundant route request messages. For example, suppase foydiards a route request
message and all its neighbors receive the message at thetissaméVithout loss of gen-
erality, let nodeb be one of the neighbors. There is a very good chance that ome@

TAsin CTAnode,, are missing from the PCTA piggybacked in the message. The reguest
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message still gets forwarded if all of the neighbor nodes Hatwdoes. One solution to
this issue is to let the neighbors forward the message ardift times. This solution has
a couple of advantages. For example, it reduces contergiomédia access and avoids
unnecessary packet loss due to the collision. It also giwes to the neighbor nodes to
learn about the route request message and hence make raggibdeo reduce redundant
route request message propagation.

We now present how a noderesponds to a received a route request message with

PCTA piggybacked. It first checks if the following conditehold:

1. Nodeb forwarded the same route request message earlier.

2. All'the TAs inCra,,,, have been covered already, namély,, . is a subset of
the union of PCTAs piggybacked on the same route requestagesseceived from

other nodes by node

3. All the TAs in C,,.4, have been covered already and a node in th&'sgt,., for-

warded the message earlier.

4. The destination of the route request message resides,jp,., and a node inside the

TA forwarded the message earlier.

5. Nodeb already saw a route reply message for this route requestigess

If any of the above conditions holds, nodesimply ignores the received message since
forwarding the message would not help any new node to retlee&venessage. Otherwise,
it computes the priorities of its direct neighbors incluglitself for forwarding the message

based on information in its neighbor tabie; 4

node,

\ and virtual PCTA (VPCTA). A virtual
PCTA is the union of”,, ..., and PCTAs piggybacked on the same seen route request mes-
sages. The priority calculated is proportional to the sizthe setCry,,,, — VPCTA.

The timeout value for a node to forward a route request mesisagversely proportional
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to this calculated priority. The higher the priority a nodeshthe faster the node will for-
ward a received route request message. After setting theotitrvalue, nodé waits for

the timeout period. If nodé receives another copy of the same route request message,
before the timeout expires, it will re-evaluate the cormais and re-calculate the priority
and timeout value if necessary. If notistill needs to forward the route request message,
nodeb adjusts the timeout value according to newly calculate@dtiut value.

Clearly, the size of PCTA piggybacked on route request ngess@irectly plays arole in
how efficient the algorithm is in suppressing redundanteagatuest messages. However,
we cannot let the size of PCTA piggybacked grow indefinit8ince a nodé only uses sets
no larger tharC'ry4,,., in calculating the criteria for forwarding a received routgjuest
message, it's clear that the TA information inside the PCT#e message is useless when
the TA is two or more hops away from the receiving nédé herefore, we can limit the
size of the bit vector to 96 bits which is good enough to coViethe TAs containing all
two-hop neighbors of the node.

In route discovery phase, a node initiates a route requestsage and the destination
upon receiving the route request message, sends a replageeddpon receiving a route
request message, the intermediate nodes record them ineareguest table (RRT). The
intermediate nodes also record route reply messages inatedle (RT) when they receive

a route reply message. Detailed descriptions of the datetates used are as follows.

1. Each route request message has six fields. They are SéQ, BstID, hopcount,
PCTA, and ALI respectively. The Seq field is the sequence murob the route
request message assigned by the source node whose addeessdsd in the SrclD
field. The source node maintains a sequence number and i@ctelh every time
it initiates a new route request. Therefore, the Seq fielettogy with SrclD field
uniquely identifies a route request message. The DstID fpddifies the address of
the destination node. The hopcount field contains the nusnifenodes the route

request message has traversed from the source so far. The &GTALI fields
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together uniquely defines the set of TAs the route requessageshas reached.

. Each node maintains a route request table (RRT) whickstoformation about re-
ceived route request messages. Each entry in this tablainerthe first 5 fields
of the received route request messages. Note that ALl isat@tant anymore after
converting the RLIs inthe PCTA to ALIs or the RLIs relativeit®own ALL. In addi-
tion to these five fields, each entry has three other fieldsy @heprehop, sameTA,
forwarded, ands. The field prehop indicates the node from which the route re-
guest message has been received. This field is updated vememéetter route to
the source is detected (i.e., when a route request mess#gdéower hopcount is
received). Typically, it contains the node from which iteaes the first copy of
the route request message. We may also take the hopcounnf@lgiccount when
updating this field. The field sameTA indicates whether a nosdiele the same TA
has forwarded the route request message. The field “fordaiddicates whether
a node has forwarded the same route request message ebhliefields records
the time at which the route request message has been reckiieedpdated when it
receives the same route request again. Each entry hasdiligeéme. We remove

an entry in case it expires.

. Each route reply message is composed of four fields. Thepeq, SrciD, DstID,
and hopcount. The first three fields are copied from the cporeding route request
message. The forth field hopcount indicates how many noegsthe reply message

has traversed from the destination.

. Each node maintains a route table (RT) which stores thingpentries describing
how to get to another node in the network. Each route entrytras fields, namely
DstID, nexthop, ands. The fieldts indicates the time at which the route entry was
created or updated. The nexthop field contains the id of thde tmwhich it needs to

forward data packets destined to the node with id DstID.
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Figure3.4shows the pseudo code for disseminating route request gesssa

When nodeb initiates a RREQ for destination d
Init rreq = (Seq = + + Seq, SreID = b, DstID = d,
hopcount = 1, PCTA = Cpoge, , ALI = ALI});
Storerreq in RRT and broadcastreg;

When b receives a RREQm
if b has forwarded a copy of: alreadythen return;
if b has not received a copy of beforethen
Storem in RRT;;
Get the entryrrt from RRT corresponding ton; /* Operations onrrt are done inRRT as well */
rrt. PCTA = rrt. PCTAUmM.PCTAU{T Anode, }
rrt.SameT A = rrt.SameT A||(ALI, == m.ALI),
if |CTAnodeb — rrt. PCTA| == 0 then return;
if (rrt.sameT A)&&(|Crode, — Trt.PCT Al == 0) then return;
priority = getPriority (rrt. PCT A, b);
toVal = priority X BroadcastSpacing; [* BroadcastSpacing is a predefined value */
if rrt.SameT A then toVal+ = SameT AW ait; [* SameT AW ait is a predefined value */
Set a timerT” with a timeout value ofoV al;

When timer T" at b expires
Get the entryrrt from RRT corresponding td”;
if rrt. forwarded then return;
10T A, 0q., —rrt.PCTA| == 0then retumn;
if rrt.sameT A and |Cyoqe, — rrt. PCT Al == 0 then retum;
Reconstruct the messagewith ALI and PCT A updated tart. PCTAU Choge, ;
Broadcastn with a broadcast jitter;

function: getPriority (PCT A, b)

C= CTAnodeb — PCTA,

priority = 0;

nset = the set of neighbors that lie IRCT A;
while (|C] > 0)

Find a noden in nset such thalC' — C;,04e,, | is the smallest;
if n is b then return priority; changed d to n
C = C — Chode,,; priority = priority + 1, nset = nset —n;

return lowest_priority; I* lowest_priority is a predefined value */

Figure 3.4: Algorithm for disseminating route request rages

Once the destination node receives the route request negegsagnds a route reply
message back to the source node via the node in the prehopdieégponding to this route
request message, found in its RRT. In this case, it also epd@t route table accordingly
for the source node. When an intermediate node receivesameply message, it simply
forwards the message to the prehop corresponding to the regtiest message entry in
RRT and updates its RT. After the route reply message redlbbe®urce node, a route has

been established to the destination and the source nodetarajoswarding data packets
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to the destination.

3.5.3 Route Maintenance

Nodes in mobile ad hoc networks may move at will. An establistoute will break when
an intermediate node on the route moves away. Therefore;esoeeds to establish a new
route in such scenario if the route is still being used. Maxigtang routing algorithms,
such as AODV and DSR, use route-error messages to notifgsaades about broken
links. The source nodes then re-initiate route discovergsiablish a new route to the
destination. In triangle based routing, each node may miaimhultiple next hops for a
given destination, helping it repair a broken link by usiniges valid next hops. We take
this approach for repairing broken links.

The basic idea behind route repair is as follows: When a nhatktects a broken link
on a route to the destination, if it can not find another at@ldink through which it can
forward data to the destination, it first sends a route repassage to its one-hop neighbors.
Upon receiving the route repair message, each node uptiateai route table by removing
appropriate links, and checks if it has a good forwardingentadthe destination. If so, it
acknowledges the route repair message. Otherwise, natleeds to be done. The broken
route is repaired when nodereceives one or more acknowledgments for the route repair

message. Otherwise, it initiates a route discovery on beh#he source node.

3.5.4 Correctness Proof

In this section, we present a correctness proof of the dlgarin a connected network.

Before presenting the correctness proof of the algorithepmve the following theorems.

Theorem 3.1 The algorithm for route discovery terminates in finite tinse@ming message

delay is bounded and the given network has finite number ags1od

Proof: Each node sets up a timer upon receiving a route request geessdorwards

the message only after the timer expires and it has nevelafded the message before.
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Since the timeout value is always finite, each node forwardsaps forwarding a received
route request message at most once in a finite time. Nodeg inettwork will stop for-
warding any given route request message in finite time simeenttmber of nodes in the

network is finite. Therefore, the algorithm terminates intétime. O

Theorem 3.2 Assuming the network is connected, for any TA having one o2 mades,
there is at least one node inside the TA that receives the me@guest message initiated by

any node.

Proof: Without loss of generality, let nodeinitiates a route request messageThus,
we rephrase the theorem as follows: The messagde received by at least one node in
eachT'A. We prove the theorem by induction GMs.

Base:Want to prove there is at least one node in eAchthat receives the message
It is clear that node in T'A,,.4., that receives the message Note that we assume that a
node will receive a message sent by itself.

Induction: Assume that there is at least one node that lie$' i) and receives the
messagen. Want to show that it is also true for ea@W in Cr,4,. According to the
algorithm, a node i’ A; does not forward the message only when all TA€if, have
been covered already (Case 1), or it has forwarded the medsdgre (Case 2). Ifitis
the Case 1, the proof is done. In Case 2, all nodéSAn receive the message. In this
case, a node, say is able to reacli’ A, which does not belong t0',,..,. According to the
proposed algorithm, nodeforwards the message whenT'A, is not covered by a route
request message. Therefore, all TA€In,, are coveredd

Theorem3.1 proves that the proposed algorithm will terminate in finited, while
theorem3.2 proves that at least one node in each TA receives the routesegqessage
initiated by a source node. Clearly, both theorems toggth&re that any route request
message initiated in a connected network will reach a noohside the TA in which the

destination lies. According to the proposed algorithm,eear some other node in the
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same TA forwards the message to the destination. In eitlsay, ¢the destination receives

the route request message.

3.6 Performance Evaluation

In this section, we present the results of our performaneduation of TBR compared
to AODV [56]. We first introduce the simulation model and then presemtsoaulation

results and analysis of those results.

3.6.1 Simulation Model

We used GloMoSim74], a widely used network-simulation tool for studying thefpe
mance of routing algorithms for mobile ad hoc networks, fealeating the performance
of TBR.

We chose IEEE 802.12f] and IP as the MAC (Medium-Access Control) and network-
layer algorithms respectively. All nodes have a fixed tragsiman range of 350m. We used
the implementation of AODV that comes with the GloMoSim 3.package to compare its
performance with TBR. This implementation employs expageding search to discover
a route from a source to a destination; under expanding eagch, the search neighbor-
hood is enlarged by increasing the TTL (TimeToLive) fieldhe tP header of the request
packets. AODV starts the search for a route to the destimétycsetting TTL to 1 or to the
previously known hopcount and repeats the search by inagése TTL by 2 (after the
TTL reaches 7, it is set to 35, the maximum network diametet) 8 RREP message is
received from the destination or the timeout for route diecy expires. This phased search
reduces the route-establishment overhead for destirsdtinan are close to the source. We
simulated TBR also with this mechanism to reduce the prapagaf route request mes-
sages.

In the implementation of AODV, we set the route-discovemeout to 10 seconds.

The source checks if a route reply message is received vdthinmes TTL milliseconds
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after the last time it initiated a route request. In our innpémtation of TBR, each node
broadcasts a heartbeat message every 2 seconds. Like AB®tteout for checking
route replies for TBR is set to 80 times TTL milliseconds. Adeae-initiates a new route

request if it receives no reply before it times out.

3.6.2 Mobility Model

We adopt the steady state random-waypoint md@ldld, 73] that is a widely used mobility
model for simulations. Under this model, each node travelsifa random location to a
random destination at a random speed, the speed beingmiyfdistributed in a predefined
range. After a node reaches its destination, it pauses foedepermined amount of time
and then moves to a new randomly chosen destination at amdpabhosen speed.

In our simulation, we set the speed range to 1 — 19 m/s. In dodgudy how mobility
affects the performance of the routing algorithms, we setepause times of 0, 30, 60, 90,
120, 200, 300, 500, and 900 seconds. When the pause timegsidse every node moves
continuously. As the pause time increases, the networkoappes the characteristics of a
fixed network.

In a dense network, a path may always be available betwees@mnge-destination
pair. On the contrary, if nodes are sparsely distributed,rtbtwork may be partitioned;
moreover, in this case, node mobility can exacerbate thatsin. In our performance
evaluation, we simulated the following three scenariogudysthe effect of density of the

nodes on performance:

e 1500 x 1500m? field with 200 nodes
e 1500 x 1500m? field with 300 nodes

e 1500 x 1500m? field with 400 nodes

We ran the simulation for each of the three scenarios for hbilsited minutes.
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3.6.3 Traffic Model

To measure the effect of network traffic, we used 5, 10, 20 B804 50 CBR (constant
bit-rate) data sources. We selected both the sources ardkgtmations randomly and
uniformly. The sources transmit data between a chosentstertand a corresponding end
time; we selected the start and corresponding end time®nalydand uniformly within
the 15-minute simulated interval in such a way that the sieawe¢ precedes the end time.
We fixed the size of data packets at 512 bytes and had eacltesgemerate packets at the
rate of 4 packets per second. Measurements were taken afédtliag time 3] of 150

simulated seconds.
3.6.4 Performance Metrics
We evaluated the performance of our algorithm with respettie following three metrics:

e Packet-delivery ratio: The ratio of the number of data ptkelivered to the desti-

nations to the number of data packets generated by the CBResou

e End-to-end delay of data packets: This figure includes abjimbe delays, includ-
ing those caused by buffering due to route discovery, quedélay at the interface

gueue, retransmission delays at the MAC layer, and promamaind transfer time.

e Normalized routing overhead: The ratio of the number of irmutontrol packets
transmitted to the number of data packets delivered to tk@rdgions. We count

each time a node sends a routing control packet to its ngxtabmhbor.

Next, we present the performance evaluation results of igorighm.

3.6.5 Performance Results

We evaluated the performance of our algorithm with respethé above-mentioned met-

rics under three scenarios.
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Scenario |

Under this scenario, we used a total of 200 nodes randontiyldised across the simulated

region.
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Figure 3.5: Varying number of data sources in scenario | (&ii{es)

Figure3.5and3.6 show the performance of TBR compared to AODV with respect to
the three metrics for varying numbers of data sources ansep@mes. In Figur@.5, the
values plotted are the average values taken over variose pigmies ranging from 0 to 900

seconds for different number of data sources. Figué¢he values plotted are for various
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Normalized control overhead
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Figure 3.6: Varying the pause time in scenario | (200 nodes)

pause times, averaged over 5 to 50 CBR sources.

Under scenario I, the simulation results show that the geen@rmalized routing over-
head of AODV and TBRis 2.23 and 1.20 respectively. As expkdiBR uses fewer nodes
for forwarding route requests than AODV, resulting in loweuting overhead. TBR has
slightly higher average end-to-end delay, on average; emend-to-end delay of AODV
increases sharply as the number of CBR sources increasesd4§. In summary, perfor-

mance of TBR is more stable than AODV when nodes with high titglaire involved or
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the number of CBR sources are high. The results obtaineceimesio Il and Il (described

next) also confirm this observation.
Scenario Il

This scenario has 300 nodes.
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Figure 3.7: Varying number of data sources in scenario 10(38des)

Figures3.7 and 3.8 show the performance of TBR compared to AODV with respect

to the three metrics for varying numbers of data sources andeptimes. In this scenario,
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Figure 3.8: Varying the pause time in scenario Il (300 nodes)

values of the normalized routing overhead, packet-dsfivatio, and end-to-end delay of
TBR are 1.67, 0.959, and 0.099 respectively, while the threasurements for AODV are
4.57, 0.963, and 0.055 respectively. In this scenario, AQRY slightly lower end-to-end
delay when fewer CBR sources are involved. However, it hgisdriend-to-end delay when
there are 50 CBR sources, which makes its average valuertimgethat of TBR. Again,
as results in Figur8.8indicate, the performance of TBR is much more stable than YXOD

with respect to node mobility.
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Scenario Il

This scenario has 400 nodes.
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Figure 3.9: Varying number of data sources in scenario DD(Aodes)

Figures3.9 and3.10show the performance of TBR compared to AODV with respect
to the three metrics for varying numbers of data sources andetimes. The simulation
results under this scenario are similar to the simulaticulte under scenario Il. TBR
has much lower routing control packet overhead than AODWis ¢ase. TBR has higher

packet-delivery ratio, and lower end-to-end delay than Adithis case when the number
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Figure 3.10: Varying the pause time in scenario Il (400 r)de

of data sources reaches 40. Even in such a dense networketagga normalized routing
overhead of TBR is 2.51, which is only 1.31 more than that enscio | and 0.84 more
than that in scenario Il. This case also demonstrates th& iEBnuch more stable than

AODV.

3.6.6 Analysis

We make the following observations based on the simula#enlts.
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Routing Overhead

In sparse networks, the two algorithms have similar padkétery ratio. Since TBR tries
to guarantee the delivery of generated data packets, ésssany useless RREQ messages
searching for non-existent paths in a partitioned netwdidwever, as the network becomes
denser, the number of route-control packets issued by TRR dot greatly increase. This
gentle rise is due to TBR'’s selective forwarding mechanisritdoding RREQ messages.
This mechanism is very efficient in controlling routing dvead by limiting the number of
nodes that forward the RREQ messages in dense networks.

The average normalized routing overhead under all threwasios for AODV and TBR
are 6.81 and 1.79 respectively. TBR has relatively constaathead as the number of
nodes in the network increases from 200 to 400. On the con&k@DV incurs much more
routing overhead as the number of nodes increases. The bargdappens as the number
of CBR sources increases or the nodes become more mobilasegime decreases).
Thus, TBR performs much better than AODV with respect toirmubverhead in networks
with highly mobile nodes, networks in which nodes are densitributed, or heavily

loaded networks.
End-to-end Delay

The overall average end-to-end delay for AODV and TBR ar@®dhd 0.10 respectively.
TBR has highest end-to-end delay in a sparse network. Thudtrarises because it is hard
to repair a broken route in a sparse network. As the densityeofietwork increases, more
routes become available, and the end-to-end delay is mpendent on the number of hops
and the network load. There the end-to-end delay under TRRrigarable to AODV. In
high-density and high-load networks, TBR has lower ené+id-delay than AODV because
TBR has much lower routing overhead. Another reason TBR lgieehend-to-end delay
is that nodes need to wait certain amount of time before fading a route request message

in order to suppress more redundant messages.
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Network Load

As we expect, as network load increases, both algorithms stweasing normalized rout-
ing overhead and end-to-end delay. However, TBR is relgtstable as the number of data

sources increases, but performance of AODV degrades greatl

3.7 Conclusion

This chapter proposes a novel mechanism for suppressingdadt route request mes-
sages when broadcasting them in mobile ad hoc networks.esepts the triangle based
routing algorithm that employs that mechanism. In a densgar&, we have demonstrated
that the algorithm efficiently selects a limited, but su#fiti, set of forwarding nodes to
flood the route requests. We compared the performance ofgantAm with a well known

routing algorithm AODV. Simulation results show that TBRvays has much lower nor-

malized routing overhead than AODV.

Copyright© Qiangfeng Jiang 2013
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Chapter 4

A Routing Algorithm with Selective
Forwarding for MANETSs

4.1 Introduction

A Mobile Ad Hoc Network (MANET) consists of a set of mobile heghat can form a
network automatically without the aid of any infrastruewr human intervention. This
feature of ad hoc networks facilitates its deployment in ety of environments such as
battlefields, disaster areas, and natural habitats. Theetinbattery life of mobile hosts
implies a need for energy-efficient routing algorithms oohsnetworks.

Depending on when the sender of a message gains a route tedbiger, routing
algorithms for mobile ad hoc networks can be classified ihtee categories: proac-
tive [15,50,54], reactive R9,55,56], and hybrid R4]. Proactive routing algorithms compute
all routes before they are needed. Reactive algorithms atanmputes on demand. Hybrid
algorithms use a combination of proactive and reactiveagugres. A reactive routing al-
gorithm consists of a route-discovery phase and a routeter@nce phase. Many of the
existing reactive routing algorithms flood the network wigdundant route-request mes-
sages in order to find a route to the destination. In this @rapte propose a reactive
routing algorithm under which a node can select its neightb@iforward route requests,
lowering the routing overhead. Moreover, our routing allidpon can help in maintaining

multiple routes to a destination.
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4.1.1 Related Work

Routing in MANETS has been extensively studied in the litene [9, 15,18, 23, 29,51,
54-56,67]. Many of the existing on-demand routing algorithms for MENs use a simple
broadcasting mechanism that floods the entire network wiliterrequest messages. This
mechanism can lead to a high redundancy of route-requesages, contention, and col-
lision. Well known algorithms such as AOD§], DSR [29], DSDV [54] and TORA B1]
use the flooding approach. Broch et @] ftudied the performance of DSDV, TORA,
DSR, and AODV. Their results show that the routing overhddlese algorithms increases
quickly as the number of of nodes in the network increaseskif®eet al. p5] proposed
Dynamic MANET On-demand (DYMO) routing algorithm, a desdant of AODV and
DSR. DYMO is suitable for sparse networks. TBRM®][and OLSR [L5] are two proac-
tive, link-state routing algorithms. Both of them are shi&for networks in which a large
number of routes are needed and for applications that catolestite the delay due to
route discovery. TBRPF reports updates reactively whenkasliate changes while OLSR
reports them periodically. Therefore, TBRPF and OLSR maywark well in networks
where nodes move quickly. In such a scenario, TBRPF may skmgeanumber of updates
into the network and nodes may have too many outdated links route table if OLSR is
used.

The Zone Routing Algorithm (ZRPRB] uses a hybrid approach for maintaining routes.
Under this algorithm, each host proactively updates itsimgutable for all destinations
within its zone. For destinations outside its zone, a nodpleys a reactive approach to
find routes on demand. Some routing algorithms use a corthdotainating setg7] as a
backbone network to minimize the number of nodes that ppatie in forwarding route-
request packets, and hence reduce overlapping routestegpapagation. A disadvantage
of this approach is that the selected “core” or “backbonedewmay drain their battery
quickly; a solution to overcome this problem is to periodlicahange the set of “backbone”

nodes. However, the complexity of computing an approximatemal dominating set of a
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wireless network (computing a truly minimal dominating isgknown to be NP-complete)
may result in high overhead.

Researchers have proposed position-based routing &ligaito limit the propagation
of redundant route-request messages during route discpk&r8,27,32,35. DREAM [4]
proactively maintains at each node the location infornmatib all the nodes in the net-
work and floods data packets to nodes in the direction of te&rdsion. Location-Aided-
Routing (LAR) [35] floods route-request packets only in a request zone, whaadidulates
based on the last known position and velocity of the destinatThe quality of unicast
routes obtained by LAR is improved itf]. GPSR B2], GFG [8], and GRA R7] use sim-
ilar greedy methods for forwarding data packets. Underetlagorithms, upon receiving
a data packet, each node forwards it to a neighbor that igrctosthe destination. This
process is repeated until the data packet reaches the ate&stin However, they use dif-
ferent mechanisms to route data packets when the greedydftils. GPSR and GFG
use perimeter-mode packet forwarding, while GRA uses et or depth-first route
discovery to handle such failures. The path found by peemetode packet forwarding
may not be optimal if the source and destination do not lie path that closely follows
a straight line. Breadth-first or depth-first route discgueiay result in very high routing
overhead for large ad hoc networks. Xing et @2][propose Bounded Voronoi Greedy
Forwarding (BVGF). Mauve et al4p] present a good survey of many routing algorithms
such as DREAM, LAR, and GPSR. Terminode routibjgombines location-based rout-
ing and link-state routing and uses anchors to optimize tladity of routes. CLR 25
partitions the network into interlaced gray and white dis¢raccording to location; only
nodes in gray districts participate in re-transmitting ttohpackets. Unlike usual greedy
position-based algorithms, NADM{] takes both distance and link cost (measured in terms
of delay, power consumption, or other metrics) into accaufrwarding data packets.

Other algorithms also try to reduce redundant propagafiooute request packetd9,

52,53]. Williams et al. p9] classify broadcasting techniques into simple floodingpability-
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based 49| flooding, area-base#$] flooding, and neighbor knowledge-basesR,[53]
flooding. Other algorithms use pruning methods such as satipg and dominant pruning
to minimize redundant propagation of packeéig b3].

The basic idea behind many of these position-based roulgagitams is to limit the
search for the destination to a portion of the network basedstimating the location of
the destination based on its last known position and veloé&iktra overhead is incurred
when the estimation turns out to be incorrect. These alyostrequire each node in the
network know its own position and the position and velocitywery other node at some
point in time. This information is not practical to maintama real ad hoc network en-
vironment. Moreover, each node in the search range is redjtar forward route-request
packets, which can result in propagating redundant reeqeest messages. Our algorithm
addresses both problems. It only requires each node to Kkmevetative position of nodes
in its neighborhood. A node trying to establish a route to stidation does not need to

know the position or velocity of the destination.

4.1.2 Assumptions

We make the following assumptions about the nodes in thearktw

e Nodes communicate via omni-directional antennas. Thesingsion range is the
same for all nodes in the network. Nodes within raityef n are called neighbors

of n; Any message sent byis received by all its neighbors.

e Nodes can determine the direction and distance of theibeig. Nodes can de-
termine their location by GPS and include it in the hello aiidpon, or they can esti-
mate the location of their neighbors by a combination of $matennas and signal-

strength measuremengq.

e Nodes are mobile.
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4.1.3 Chapter Objectives

None of the many existing position-based routing algorghr routing in ad hoc net-
works, to our knowledge, uses the relative position of nieggh to reduce route-discovery
overhead. Furthermore, many of the existing reactive ngudigorithms use simple flood-
ing for sending route requests, which may result in reduhdessages, contention, and
collision. To address these faults, we prop&3eSF (Routing Protocol with Selective
Forwarding), a novel algorithm for route discovery in molakkhoc networks. RPSF tries
to minimize the propagation of redundant route requestsnyithg the number of nodes
that forward any route-request message. Performanceathvalishows that RPSF has sig-

nificant advantages over AODV.

4.1.4 Organization of the Chapter

The remainder of this chapter is organized as follows. Thechdea behind route-request
propagation under RPSF in an ideal network is presenteddtiddet.2 In Section4.3,

we extend this algorithm to a general network and presentR&®§eneral route-discovery
algorithm. In Sectiort.4, we evaluate the performance of RPSF and compare its perfor-
mance with AODV p€]. In Section4.5, we discuss the merits and shortcomings of our

routing algorithm. Finally, SectioA.6 concludes this chapter.

4.2 Route-Request Propagation under RPSF in the Ideal
Case

In many of the existing reactive routing algorithms for ad hetworks, when a source
node wants to find a route to a destination, it broadcastste4eguest (RREQ) message
to all its neighbors; every node that receives the routeesgmessage rebroadcasts the
request to all its neighbors. This method results in oveilag broadcasts and incurs a
lot of network overhead. In order to minimize such overlappeadcasts, RPSF chooses

only a subset of the nodes in its neighborhood to forward tRE® message. However,
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Two nodes are neighboring if the distance betweeno
them is smaller than the length of the segment shown on the

Figure 4.1: Route-Request Propagation in the Ideal Case

it ensures that the RREQ message eventually reaches theatiest unless the network is
partitioned. In the ideal situation, under RPSF, a souraeramly needs to select three
of its neighbors to forward its RREQ message. Each node fdmgthe RREQ message
needs to select only two nodes in its neighborhood to releyRREQ and this continues
until the RREQ reaches the destination.

The ideal caseoccurs when the source node is able to select three nodearéhat
distanceR and arel20° apart with respect to the source to forward the RREQ message.
Moreover, every forwarding node (unless it lies at the edgd® network) receiving the
route request from a node is able to select two nodes that are at distakcand are
120° apart with respect ta. Figure4.lillustrates this ideal situation in which the source
Sinitiates route discovery by sending a route request. Swiides represent the nodes
forwarding the RREQ message; arrows point from nodes besithg the RREQ message
to nodes selected to forward the RREQ message. Noidéiates the route-discovery
process by sending a RREQ messafeselectsA;, A, and As as its forwarding nodes.
Ay, for example, select®, and B3 as forwarding nodesD, receives the route request

from bothC; andC, in some order. Depending on this ordéx, selects eithefC,, E5}
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or {Cs, E5} as its set of forwarding nodes. The same node can be selecgefbavarding
node by more than one node. However, a node forwards the geeesdy once even if it
has been selected as a forwarding node by more than one nomia. Higure4.1 and the
properties of regular hexagons, it is clear that the roudeest sent by a source eventually
reaches the destination in the ideal case if the networktipautitioned. To be precise, in
the ideal case, the entire geographical region can beipagd into hexagons as shown in
Figure4.1 with the source lying at the vertex of one of these hexagorssa fesult of the
source broadcasting the route request each node on the eéach of these hexagons
will rebroadcast the message. Each node inside a hexagdraisliatance less than or
equal toR from one of the vertices of the hexagon, whétés the length of each side of
the hexagons which is also the transmission range of eaoh nidilis, every node in the
system is within the transmission range of at least one nomdicasting the route request

and hence will receive the route request.

4.3 Route Discovery in the General Case

The ideal situation of Sectioh2may not be presentin a general ad hoc network, especially
if the nodes are sparsely distributed. Based on the intugained from the algorithm in

the ideal case, we now present an algorithm that is suitablgeneral ad hoc networks.

4.3.1 Selecting Forwarding Nodes for Route-Request Propagon

The key difference between route-request propagatioreirdial case and the general case
lies in how a node selects its forwarding nodes. We first pitethe criteria used by a node
for selecting its forwarding nodes. We then present theergligcovery algorithm in the

general case and prove its correctness.
Definition 4.1 A node AcoversB if B lies within the transmission range of A.

Definition 4.2 In an ad hoc network, a nodeéis reachablefrom nodes if either (i) d is
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within the transmission rang®& of s or (ii) there exists a sequence of nodeszs, ..., z,
such thaty; is within distanceR fromz;_; for 1 < i < n ands andd are within distance
R fromz, andx,, respectively. In other words, there exists a path,, xo, ..., z,,, d from s

to d in the network.

In the general case, a nodeises the following steps to determine the list of forwarding
nodes: It selects as distant a node as possible within fisriression range. It then selects
further nodes that are mutually as far apart as possiblerasvay as possible from, and
subject to the constraint that the angle made by any two seeenodes and is at most
120°. This last constraint is relaxed if no node can be found thtsfes it.

This method to select forwarding nodes may fail to cover thére network in the
general case. We now discuss some special scenarios thdé aeeds to take into consid-
eration while selecting forwarding nodes and also propokesifor handling such special

scenarios.

(a) (b)
Figure 4.2: Selection of forwarding nodes in the generat cas
Scenario (i): The ad hoc network consists of six nodds,B, C, D,z andy, as shown in
Figure4.2(a). The distance betwegnandz is < R; the distance betweepand every
other node is> R. B andD are at distancé& from A and/DAB < 120°. F'is a point on
the bisector o ABC. E is a point at distanc& from C, and/BCFE = 120°. F andF
do not represent any node in the ad hoc network; they are qustgof reference. Suppose

A is the source node that initiates the route discovergelectsB and D as forwarding

nodes and sends them an RREQ messdgjselectsC' as its only forwarding node and
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forwards the RREQ message. All nodes in the network recheedute request except
This failure would not happen iB also chooses as a forwarding node, becauseovers
y. This observation leads to the following additional rule flee selection of forwarding
nodes.
Rule 1: When a node3 receives a route request from a nadleit chooses a forwarding
neighborC' such that (i)C is as far as possible from® and (i) /ZABC is as large as
possible bu 120° (if there is no such node,ABC could be> 120°). After choosing”,
B may find one or more neighbors in the sectarB F' (whereF' is a point on the bisector
of /ABC), and the shortest of the distances between the neighbsector/ ABF and
neighbors in sectaf ' BC' (includingC’) may be greater thaR. If so, B replaces its choice
of C' with the neighbor in / ABF that is closest to the line segmént’; it resolves ties by
picking the neighbor farthest fror. After choosingr as a forwarding node? continues
selecting other forwarding nodes, which may incldde

The intuition behind this rule for selecting forwarding msds that there could be nodes
such agy in Figure4.2(a) (that are exterior to the two circles with centeand B) that are
not covered byA, B, C' or D but can be covered by some node within the rangB bfing
inside the sector ABC'. B needs to choose the farthest such node as a forwarding node to
cover nodes such as

Scenario (ii): The ad hoc network consists of six hodes: B, C, D, x and y shown
in Figure4.2(b). In this figure, the distance betwegrandx is < R; the distance be-
tweeny and every node other thanis > R. B and D are at distancé& from A. Fis
a point in the plane such that"AB = 90°. G is a point such thatGBA = /GAB =
arctan(%— W) < arctan(2 — v/3). F andG do not represent any nodes in the
network; they are just points of reference. Suppdss the source node that initiates the
route discovery.A selectsB and D as forwarding nodes and sends them the RREQ mes-
sage. B selectsC as its only forwarding node and forwards the RREQ messagethal

nodes in the network receive the route request exgephis failure would not happen if
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A or B also chooses as a forwarding node, becauseoversy. This observation leads to
the following additional rule for selecting forwarding resl

Rule 2: After a nodeA chooses two nodeB and D as forwarding nodes, if there is a
nodez that lies in the triangular regioh G A B whereG is some pointin the sectatD AB
such thavGBA = /GAB = arctan(m—W) < arctan(2 — /3), A replaces
its choice of B with thatx that is close to the line segmeAf3 (and secondarily close to

nodeA) and then continues the selection of forwarding nodes. Akaroalculation shows

that if y is reachable fromx, thenz should lie in the triangular regioAG AB such that

/GAB = /GBA = arctan(%— W).

The intuition behind this node-selection rule is to covetemsuch ag in Figure4.2(b)
(lying between the common tangent lines to the circles wetiiters atd and B and exterior
to these two circles), which may be within the transmissemge of some node close to
the line AB in the sector DAB, in AGAB, but are not within the transmission range of
AorB.

An Optimization for RREQ forwarding: Because of the delay in RREQ message
propagation in various directions, it is possible that aeeds selected as a forwarding
node by one of its neighbors even after all the neighbors b&ve received the RREQ
message. In such a casegoes not forward the message even though it has been selected
as a forwarding node by one of its neighbors. Since each nadlgamns a list of directions
from which it receives the same RREQ message, it can deterifrati its neighbors have
received the RREQ message without it having forwarded thesage. For example,iifis
selected as a forwarding node by one of its neighbors afteceives the RREQ message
from three of its neighbors that are1&0° to each other with respect ig thenn need not
forward this message because all its neighbors would hagad received this message.
So, even if a node is selected as a forwarding node, it need not forward the agest it

can judge that all its neighbors would have received the agess
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When b initiates a RREQ for destination d
Select a list L of forwarding nodes;
if L is emptythen return; /* No neighbor */
Init RREQ = (Seq=++Seq, SrclD-DstID=d,
HopCount=1,FwdIDList=L);
Broadcast RREQ;

When b receives RREQ from noden at direction dir
if (RREQ.SrcID ==b) then return;
Store (Seq=RREQ.Seq, SrcID=RREQ.SrcID, Directionldst
in RRT;
if RREQ is new or the route to RREQ.SrcID in RREQ is shattien
Remove all routes to RREQ.SrcID in RT;
Store(NextHopr, HopCount=RREQ.HopCount) in the
NextHoplInfoList corresponding to RREQ.SrcID in RT;
if b relayed this RREQ beforen return;
if RREQ.DstID ==b then /* Initiate a RREP */
Init RREP= (Seq=RREQ.Seq, SrcID=RREQ.SrcID,
DstID=RREQ.DstID, HopCount=1);
Broadcast RREP;
return ;

if b € RREQ.FwdIDListthen /* It is a forwarding node */

if b has received but not relayed RREP for the RREEn

Init RREP = (Seq=RREQ.Seq, SrcID=RREQ.SrcID,
DstID=RREQ.DstID, HopCount=1+(HopCount in RT));

Broadcast RRERgturn ;

if b has already relayed RREP for this RRE®@n return;

if b has already relayed this RREfen return;

Select a list L of forwarding nodes;

if L is emptythen return;

Set RREQ.FwdIDList =L;

RREQ.HopCount++;

Broadcast RREQ;

When b receives RREP fromn
/* Source node maintains multiple routes to a destination */
/* Intermediate nodes on a route to a destination maintain */
/* only one route to that destination */
if (RREP.DstID ==b) return;;
if (RREP.SrcID =) then
Append (NextHop#s, HopCount=RREP.HopCount) to the
NextHoplInfoList corresponding to RREP.DstID in RT;
return ;
elseifRREP is new or RREP has better rotlien
Remove the route entry for RREP.DstID in RT;
Store (NextHops, HopCount=RREP.HopCount) to the
NextHoplInfoList corresponding to RREP.DstID in RT;
if b has already relayed RREQ but not RR&BEn
RREP.HopCount++;
Broadcast RREP;

Figure 4.3: RPSF route discovery in the general case

The general-case algorithm uses the message types andqeedata structures given

in Table4.1

e RREQ:A route-request message sent to find a route to a destination.

e RREP:The route-reply message sent to notify the source of a valiter

e NIT: A table maintained at each node and contains the directidrdetance informa-

tion for each of its neighbors. This table, which is periadlic updated, is used for

determining forwarding nodes.
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Message or table name Contents

Route-Request packet (RREQ¥eq, SrcID, DstID, HopCount, FwdIDList
Route Reply packet (RREP) Seq, SrclID, DstID, HopCount

Route Repair packet (RRPR)AckFlag, SenderlD, DstID, HopCount
Neighbor Information Table (NIT) | NeighborID, Direction, Distance
Route-Request Table (RRT)| Seq, SrclD, DirectionList

Route table (RT) DstID, NextHoplnfoList

Table 4.1: Data structures for the algorithm in the geneaaéc

¢ RRT:A table maintained at each node containing information attmRREQ messages
received. For each RREQ message, it contains the sequemtEn(Seq), id of the
source node that initiated the RREQ message (SrclD), arsl afldirections from

which the RREQ message was received.

¢ RRPRA route-repair message used for repairing a broken routeuterto a destination
could be broken due to a node moving outside the transmisarage of an adjacent

node in the route. RPSF only considers 1-hop repair.

¢ RT: The routing table maintained at each node, containing hegtinformation for each

destination to which a route has been established.

e Seq: The sequence number assigned to a RREQ message by the simgether with
the SrcID, Seq uniquely identifies a RREQ and its correspgnBREP message.

¢ ID: The unique identifier or address of a node, used in fields ssi@r@D, DstID, and

NeighborID.

e HopCount: An integer message field. In the RREQ message, it counts tméerof
nodes traversed by the RREQ message from the source. In tB® Riessage, it
counts the number of nodes traversed by the RREP messagéieatastination. In
the route repair (RRPR) message, it is meaningful only whenAckFlag is true,
when it counts the number of nodes on the path from the déistmi the node that

have acknowledged the RRPR message.
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e FwdIDList: The list of nodes that need to forward the RREQ message.
e Direction: Information about the direction in which a neighbor lies.
¢ Distance:The physical distance between a node and its neighbor.

e DirectionList: The list of directions from which the same RREQ message har be

received so far.

e AckFlag: A Boolean field of an RRPR message. If it is false, the RRPR agess
is a request sent for repairing a broken route to some déstnalf true, it is an
acknowledgment sent by a node that has a route to the déstinatresponse to a

RRPR request. .
e SenderID:The ID of the node that initiates the RRPR message.

¢ NextHoplnfoList:For each destination, RPSF maintains multiple routes.&Sponding
to each destination, NextHoplnfoList contains the list ekishop nodes lying on
various paths to that destination; it also includes the Hapt€to the destination via

each such node.

The algorithm for forwarding an RREQ message remains the senin the ideal case
except in the way the forwarding nodes are selected. Foctsgdethe forwarding nodes
in the general case, each node uses the selection critgndesuented with Rules 1 and
2 discussed earlier. We prove below that the RREQ messagégeamy source node
eventually reaches the destination if the destinationashrable from the source. We now

present the basic idea behind route discovery in the gecasal

4.3.2 Basic ldea Behind RPSF in the General Case

The basic idea behind the route-discovery algorithm is bovws:
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When a node wants to find a route to a destination, it assigaguwesce num-
ber to the route request (RREQ), selects a set of forwardings using the
criteria described in Sectiof.3.1 and sends the request. When an interme-
diate node receives the request, it stores the sequenceenuohrce ID and
direction in its route-request table (RRT). If this pathlh@ger than an earlier
path through which the same route request was receivedtas & hew request
then it stores the source ID and the next hop in the routinig t@r). If the
node receiving the RREQ is the destination, it sends an RRiEPthe same
sequence number and with HopCount initialized to 1. If theeneceiving the
RREQ is an intermediate node that has not already forwardesadme RREQ,
it selects a set of forwarding nodes, increments the HopCanohforwards the
request. If the intermediate node already knows a routegtaldstination, ob-
tained through the corresponding RREP sent by the destmdtisends back a
route reply (RREP) with a sequence number that is same aséhie the route
request. The route reply propagates to the source alongathdnaversed by
RREQ in the reverse direction. When a node receives an RRESsponding
to an RREQ (the ID of the node that sent the RREQ and the segumremsber
uniquely identifies a RREQ), it increments the HopCountiestdhe destina-
tion ID, next hop ID and HopCount in its routing table (RT) drdadcasts the
RREP if it is a forwarding node for the corresponding RREQ.idtermediate
node receiving an RREP does not forward it until it receivesadorresponding
route request. Route replies propagate backward alongatins fraversed by
the corresponding RREQs. Thus the source can maintaingteultiutes to the

destination.

The formal description of the algorithm for route discoveryhe general case is given

in Figure4.3. We now prove the correctness of our algorithm.
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Figure 4.4: Proof of coverage in the general case

Lemma 4.1 In the general case, a RREQ message sent by a source snedentually

reaches its destinatiodif d is reachable frons.

Proof: We prove this lemma by contradiction. Suppose a RREQ messagdys is
not received byl. Then there exists a path...x, vy, ...d from s to d and a noder # d in
the path such that receives the RREQ message, but none of the nodes in the pathdoe
x receives the RREQ message. Suppgse the first node followinge in the path that
does not receive the RREQ message. It is possiblejtisad. y is within the transmission
range ofz, buty did not receive the RREQ message; thatibas not forwarded the RREQ
message. Two cases arise:

Case (1) = was chosen as a forwarding node by some nodechkditl not forward the
RREQ message because, in its judgment, based on the receptle RREQ message in
various directions, all its neighbors includipgvould have received it. So, this case does
not arise.

Case (2):x was not chosen as a forwarding node by any of the nodes frochwhieceived
the RREQ message.

SupposeA is one such node from whichreceived the RREQ message. Sinds within
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the transmission range df, A must have chosen at least two nodeand D as forwarding
nodes such that lies in the sector DAB with /DAB < 120°. The following two sub-
cases arise:

Case (2.1):x lies within the transmission range of bathand D as shown in Figurd.4(a),
and (b). In this case, singedid not receive the messagenust be outside the transmission
range ofA, B andD. Moreover, since lies within the transmission range ©f theny has
to lie in the sector D AB, because, if lies outside the sectarD AB and within distance
R from z, theny must be within distanc& from one of the nodesl, B or D, which is a
contradiction to our assumption thatlid not receive the message. In this caBeyould
have selected or some other nodein the sectorz D AB that is close to the line segment
BF and farthest fronBB as a forwarding node according to the forwarding node gelect
Rule 1, or C' would have selected some node that would cgve8uch a forwarding node
s, selected by3, would have forwarded the message that would have beerveedeyy if

it is covered bys. However, ifs is closer toB thany, thens may not covery. In this case,

if s will selects a forwarding node that coversthen we are done. i does not select a
forwarding node that coverg thens will do the same thing a® does and; will finally

be covered since the next selected forwarding node sinailamtill be closer toy thans.
This contradicts the fact thatdid not receive the message. Hence the Lemma is true in
this case.

Case (2.2):x lies within the transmission range of eithBror D but not both. Without
loss of generality, supposelies within the transmission range 8fbut notD as shown in
Figures4.4(c) and (d) (the case in whichlies within the transmission range of but not

B is similar). Two sub-cases arise.

Case (2.2.1)y lies in the sector BAD. (We already know thaj is reachable from: but
not from A, B or D.) Such a situation is shown in Figude4(c). This case is similar to
Case 2.1. Nodé chooses: or some other nodeas a forwarding node usirigule 1 that

would covery, or C' chooses some node that would coyer
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Case (2.2.2)y does not lie inside the sectoiBAD.

Sincey is reachable fronx, z is close to the line segmenrtB, andy lies in the region

enclosed by the common tangent line to the two circles widiusaR and centers att and

B and the two circles themselves, as is shown in Figudgd). A simple calculation shows

that if y is reachable fromx, thenz lies inside the triangl\GAB such that GAB =
2R—+/4R?—|AB|? .

/GBA = arctan(w) < arctan(2 — /3). In this caseA would have chosen

x or some other node close 0 in the triangular regiom\GAB as a forwarding node

according taRule 2. Hencey is covered by such a node, contradicting to the factgldatl

not receive the message. Hence the Lemma is true in thisCase.

4.3.3 Routing-Table Maintenance

As nodes move in the network, one or more links in an estaddisbute may break. In
order to transmit the received data to the given destinaonode that detects broken
links needs to repair the broken route and update its rotaiplg. In many existing routing
algorithms (like AODV and DSR), route-error messages giatifurce nodes about a broken
link in a path, and the source nodes re-initiate route disgoto establish a new path. In
RPSF, each node can maintain multiple next hops for a givetindgion, helping it repair
a broken link by using other valid next hops. We take this apphn for repairing broken
links.

The basic idea behind routing-table maintenance in RPS§ figllaws: When a node
n detects a broken link, if it can not find another availablé linrough which it can for-
ward data to the destination, it first sends a route repaiPfRRmessage to its one-hop
neighbors. Upon receiving the RRPR message, each nodeesptiabwn route table by
removing appropriate links, and checks if it is a good fodhiag node to the destination.
If so, it acknowledges the RRPR message. Otherwise, nottgads to be done. If node
receives one or more acknowledgments for its RRPR messagmute has been repaired.

Otherwise, it initiates a route discovery on behalf of therse. The formal description of
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the route-maintenance algorithm is given in Figdrg

Function: HandleBrokenLink(ID, NextHop)
for each destinationd in RT do
Remove NextHop from NextHoplnfoList of RT if appropriate;
if NextHoplnfoList is emptythen /* No valid route tod */
if it has buffered data destinedddhen
Init RRPR = (AckFlag=false, SenderID=ID, Dstld=
HopCount=known hop count);

Broadcast RRPR;

[* this code is executed periodically */
When b finds that neighboring noden is out of transmission range
Call Function HandleBrokenLink( n);

When b drops a packet due to link failure to n
Call Function HandleBrokenLink( n);

When b receives a RRPR message from
if RRPR.AckFlaghen /* It is an ack for the RRPR request */
if RRPR.SenderID =#% then
Append (NextHopm, HopCount=RRPR.HopCount) to the
NextHoplInfoList corresponding to RRPR.DstID in RT;
if b has buffered data for RRPR.DstID, and has a valid route
Transmit the data;
else/* Itis a request for route repair */
Removen from the NextHoplInfoList of RRPR.DstID in RT;
if b has a route to RRPR.DstID and RRPR.HopCaurittopCount
in RT for RRPR.DstIDthen
Set RRPR.AckFlag = true;
Set RRPR.HopCount = HopCount in RT + 1;
Send RRPR back to RRPR.SenderlDAck RRPR Request */

Figure 4.5: Route-maintenance algorithm

Let us follow an example to understand the route-maintematgorithm. Figuret.6

shows a network with five nodes, wheseand D are the source and destination, respec-

tively. Two paths exist front to D. Suppose nodel moves away.S now forwards data

throughB. If B also moves aways no longer has any next hop fd» in its route table.

Therefore,S broadcasts a RRPR messagereceives and acknowledges the RRPR mes-

sage.S then updates its routing table to reflect the fact thias a next hop for destination

D. If E also moves awayj re-initiates route discovery to find a pathfio

4.4 Performance Evaluation

We now present the results of performance evaluation of Rie@ipared to AODV $6).

We first introduce the simulation model and then present itin@lation results and our

analysis of those results.
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Figure 4.6: An example of route maintenance

4.4.1 Simulation Model

We used GloMoSim74], a widely used network-simulation tools for studying trexfpr-
mance of routing algorithms for ad hoc networks, for evahgathe performance of RPSF.

We chose IEEE 802.12f] and IP as the MAC (Medium-Access Control) and network-
layer algorithms respectively. All nodes have a fixed tragsiman range of 350m. We used
the implementation of AODV that comes with the GloMoSim 3.package to compare its
performance with RPSF. This implementation employs expaadng search to discover
a route from a source to a destination. The neighborhoodlseange is enlarged by
increasing the TTL (TimeToLive) field in the IP header of tequest packets. AODV starts
the search by setting TTL to 1 or to the previously known Hop@@nd repeats the search,
increasing the TTL by 2 until it reaches 35 (itincrementsThé from 7 directly to 35, the
maximum network diameter) or a RREP message is receivedebtfe timeout expires.
This phased search reduces the route-establishment addidredestinations that are close
to the source. We simulated RPSF also with this mechanismdiace the propagation of
route request messages.

In the implementation of AODV, we set the route-discovenyeout to 10 seconds. The

source checks if an RREP message is received within 80 timksnilliseconds after the
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last time it initiated a route request. In our implementatdbRPSF, we update the direction
and distance of the neighbors of each node every 2 seconkis AODV, the timeout for
checking route replies for RPSF is set to 80 times TTL mitlseds. A node re-initiates a

route request if it receives no reply before it times out.

4.4.2 Mobility Model

We adopt the steady state random-waypoint md@ldld, 73] that is a widely used mobility
model for simulations. Under this model, each node travelsifa random location to a
random destination at a random speed, the speed beingmiyfdistributed in a predefined
range. After a node reaches its destination, it pauses foedepermined amount of time
and then moves to a new destination at a different randoimbgen speed.

In our simulation, we set the speed range to 1 — 19 m/s. In dodgudy how mobility
affects the performance of the routing algorithms, we setepause times of 0, 30, 60, 90,
120, 200, 300, 500, and 900 seconds. When the pause timegsidse every node moves
continuously. As the pause time increases, the networkoappes the characteristics of a
fixed network.

In a dense network, a path may always be available betwees@mnge-destination
pair. On the contrary, if nodes are sparsely distributed,rtbtwork may be partitioned;
moreover, in this case, node mobility can exacerbate thatsin. In our performance
evaluation, we simulated the following three scenariogudysthe effect of density of the

nodes on performance:

e 1500 x 1500m? field with 200 nodes
e 1500 x 1500m? field with 300 nodes

e 1500 x 1500m? field with 400 nodes

We ran the simulation for each of the three scenarios for hbilsited minutes.
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4.4.3 Traffic Model

To measure the effect of network traffic on RPSF, we used 52Q@0, 40, or 50 CBR
(constant bit-rate) data sources. We selected both thees®and the destinations randomly
and uniformly. The sources transmit data between a stagtaimal an end time; we selected
all start and the corresponding end times randomly and umlfowithin the 15-minute
simulated interval in such a way that the start time prectdueend time. We fixed the size
of data packets at 512 bytes and had each source generagsacthe rate of 4 packets

per second. Measurements were taken after a settling @ighef 150 simulated seconds.

4.4.4 Performance Metrics

We used the following three metrics to evaluate performance

e Packet-delivery ratio: The ratio of the data packets dedigeo the destinations to

those generated by the CBR sources.

e End-to-end delay of data packets: This figure includes adkjide delays, includ-
ing those caused by buffering due to route discovery, quedélay at the interface

gueue, retransmission delays at the MAC layer, and projmamand transfer time.

e Normalized routing overhead: The ratio of the number of irmutontrol packets
transmitted to the number of data packets delivered to tktrdgions. We count

each time a node sends a routing control packet to its ngxtabmhbor.

4.4.5 Confidence Intervals

As we mentioned earlier, we simulated 324 different scesa® different pause times, 6
different numbers of CBR sources, three scenarios, andltyeoitams,9 x 6 x 3 x 2 = 324)

for the two algorithms and simulated each scenario twentgsi We computed 95% con-
fidence intervals for packet-delivery ratio, end-to-enthgend normalized routing over-

head. Tablel.2 gives the distribution of tests and the related error ram@ges percentage
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of the mean values. The values obtained for about 89.5% atitelie in the interval
[(meanvalue — meanvalue x 0.25), (meanvalue + meanvalue * 0.25)].

For clarity and simplicity, we do not plot error bars in theghs.

Errorrange (%) 0-5|5-10| 10-15| 15-20| 20- 25| 25-100| 100 - 155
Tests (%) 32 | 236 | 20.6 7.6 4.7 9.9 1.6

Table 4.2: Distribution of tests in terms of confidence inéds

4.4.6 Performance Results

Scenario |

This scenario has 200 nodes.

Figure4.7and4.8 show the performance of RPSF compared to AODV with respect to
the three metrics for varying numbers of data sources ansep@mes. In Figurd.7, the
values of the three metrics are the average values takenvakieus pause times ranging
from 0 to 900 seconds for different number of data sourceguré.8 contains the values
of the three metrics for various pause times, averaged oi@b6 CBR sources.

Under scenario I, the simulation results show that the geen@rmalized routing over-
head of AODV and RPSF is 2.23 and 0.67 respectively. As erde®PSF uses fewer
nodes for forwarding route requests than AODV, resultingpwmer overhead. RPSF also
has a better average packet-delivery ratio than AODV. RP&Fshightly higher average
end-to-end delay, which becomes much more pronounced amithber of CBR sources
increases. The AODV line changes more sharply than RPSFegsatlse time increases.
Therefore, performance of RPSF is more stable than AODV wieeles with high mobil-
ity are involved in the simulation. The results obtaineddargrio Il and Il also conforms

with this observation.
Scenatrio |l

This.scenario-has.300 nodes.
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Figure 4.7: Varying number of data sources in scenario | (kiXfes)

Figures4.9and4.10show the performance of RPSF compared to AODV with respect
to the three metrics for varying numbers of data sources andeptimes. In this scenario,
RPSF performs better than AODV with respect to all three iw&tFor instance, the aver-
age values of the normalized routing overhead, packetatglratio, and end-to-end delay
of RPSF are 0.81, 0.986, and 0.052 respectively, while tteetimeasurements for AODV
are 4.57, 0.963, and 0.055 respectively. In this scena@D¥ has slightly lower end-to-

end delay when fewer CBR sources are involved. Howeversitigher end-to-end delay
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Figure 4.8: Varying the pause time in scenario | (200 nodes)

when there are 50 CBR sources, which makes its average vigloerithan that of RPSF.
Again, as results in Figuré.10indicate, the performance of RPSF is much more stable

than AODV with respect to node mobility.
Scenario Il

This scenario has 400 nodes.
Figures4.11and4.12show the performance of RPSF compared to AODV with respect

to the three metrics for varying numbers of data sources andeptimes. The simulation
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Figure 4.9: Varying number of data sources in scenario 10(38des)

results under this scenario are similar to the simulatisalts under scenario Il. RPSF has
much lower routing control packet overhead, higher padediicery ratio, and lower end-
to-end delay than AODV in this case. Even in such a dense miefthe average normalized
routing overhead of RPSF is 1.07, which is only 0.4 more tina ih scenario | and 0.26

more than that in scenario Il. This case also demonstragaRRRASF is much more stable

than AODV.
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Figure 4.10: Varying the pause time in scenario Il (300 npdes

4.4.7 Analysis
We make the following observations based on the simulagsults.
Routing Overhead

In sparse networks, the two algorithms have similar padkditrery ratio. Since RPSF tries
to guarantee the delivery of generated data packets, ésssany useless RREQ messages

searching for non-existent paths in a partitioned netwidwever, as the network becomes
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End-to-end delay (s)

denser, the number of route-control packets issued by RB&§rtbt greatly increase. This
gentle rise is due to RPSF’s selective forwarding mechamsitooding RREQ messages.
This mechanism is very efficient in controlling routing dvead by limiting the number of
nodes that forward the RREQ messages in dense networks.

The average normalized routing overhead under all threeasics for AODV and
RPSF are 6.81 and 0.86 respectively. RPSF has relativetamioverhead as the number

of nodes in the network increases from 200 to 400. On the agntAODV incurs much
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Figure 4.12: Varying the pause time in scenario Il (400 r)de

more routing overhead as the number of nodes increases.ahine thing happens as the
number of CBR sources increases or the nodes become moréenfmbpause time de-
creases). Thus, RPSF performs much better than AODV witre#do routing overhead
in networks with highly mobile nodes, networks in which nedee densely distributed, or

heavily loaded networks.
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End-to-end Delay

The overall average end-to-end delay for AODV and RPSF &@&20and 0.064 respec-
tively. RPSF has highest end-to-end delay in a sparse nletvais result arises because it
is hard to repair a broken path in a sparse network. As thetgierishe network increases,
more paths become available, and the end-to-end delay s dependent on the number
of hops and the network load. There the end-to-end delayrdRBS&F is comparable to
AODV. In high-density and high-load networks, RPSF has loemd-to-end delay than

AODV because RPSF has much lower routing overhead.
Network Load

As we expect, as network load increases, both algorithms stweasing normalized rout-
ing overhead and end-to-end delay. However, RPSF is relgtstable as the number of

data sources increases, but AODV degrades greatly.

4.5 Discussion

Our measurements show that RPSF is far superior to AODV,cedpyefor higher node
densities. At 400 nodes in a region Bf00 x 1500m?, each node has, on average, about
68 neighboring nodes within transmission distance. Thissilig is typical of a scenario
such as attendees of a conference trying to establish anadetwork of their laptops.
However, this superiority has a price. We require accurasgtion knowledge, which
implies additional hardware (GPS or smart antennas) ancbitsomitant battery drain.
However, unlike existing position-based routing algan#) our algorithm requires that
each node know the relative position only of its neighboniogles, not of all nodes in
the network. We also require that communication links berédadional, even at extreme
ranges. A practical implementation of RPSF would most \ilkeHloose forwarding nodes
at perhaps 80% of the transmission range to improve the elardirectionality of links;

this choice would increase the average path length, andftirerthe end-to-end delay.
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4.6 Conclusion

This chapter proposes a novel mechanism for flooding in adnledworks. It presents
the RPSF routing algorithm that employs that mechanism. derese network, we have
demonstrated that the algorithm efficiently selects a &édhibut sufficient, set of forwarding
nodes to flood the route requests. We compared the perfoenadraur algorithm with a

well known routing algorithm AODV. Simulation results shtimat RPSF always has much

lower normalized routing overhead than AODV.

Copyright© Qiangfeng Jiang 2013
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Chapter 5

Conclusion and Future Work

5.1 Summary

This dissertation focused on designing efficient algorgHar achieving fault tolerance in
distributed systems and routing in mobile ad hoc networks.

We presented a novebmmunication-inducecheckpointing algorithm that makes ev-
ery checkpoint belong to a consistent global checkpoinddyrthis algorithm, every pro-
cess stores the tentative checkpoint in memory first and fllashes it to stable storage
when there is no contention for accessing stable storagéterfanalizing the tentative
checkpoint. Messages sent and received after a processdakatative checkpoint are
logged into memory until the tentative checkpoint is finatlz Since a tentative checkpoint
can be flushed to stable storage any time before finalizimgittention for stable network
storage that arises due to several processes storing thkpchets simultaneously is re-
duced/eliminated. Moreover, unlike existing communimatinduced checkpointing algo-
rithms, our algorithm, in general, does not force a procesake a checkpoint before pro-
cessing any received message in order to prevent useledgci@s. Thus, a process can
first process the received message and then take the chetKpais improves the response
time for messages. It also helps a process take the regatdrgduled basic checkpoints at
those times. If messages are not frequently exchanged apnoogsses, additional control
messages may be required for the algorithm to collect ctamtiglobal checkpoints in a

timely manner. \We augmented the basic algorithm with comessages to speed up the
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collection of consistent global checkpoints in a timely manfor applications in which
processes do not communicate frequently. We conductedf@rpemnce evaluation of the
algorithm and studied the overhead induced by the contrgsages which also helps in
determining when control messages are needed. We also oexdrtha performance of our
algorithm with Vaidya’s algorithm@6]. In minimizing the contention for stable storage at
the network file server, our algorithm always performs lyattan Vaidya’s algorithm. Our
algorithm also has other desirable features such as thabéids| low control messages
(or even no control messages) and less checkpoint latemegared to Vaidya'’s algorithm
algorithm.

We designed two novel methods for suppressing redundam reguest messages
when broadcasting them in mobile ad hoc networks. We thesepted two new rout-
ing protocols, namely, triangle based routing (TBR) protcend routing protocol with
selective forwarding (RPSF), for mobile ad hoc networkst #mploy the mechanisms.
Performance of TBR and RPSF have been evaluated with Glais®Bnulator. We have
demonstrated that the protocols efficiently select limiteat sufficient, set of nodes to
forward the route requests. We compared the performancarcdigorithms with a well
known routing algorithm AODV. Simulation results show thath TBR and RPSF always

have much lower normalized routing overhead than AODV.

5.2 Future Work

In the future, we will focus on designing better algorithros &chieving fault tolerance in
distributed systems and routing in mobile ad hoc networks.

In Chapters3 and4, we demonstrated the advantages of TBR and RPSF with respect
routing overhead in mobile ad hoc networks. They can be ttméé more efficient, more
adaptive, and easier to implement. We discuss below the waykich they can be fine

tuned.
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Algorithm for Selecting Forwarding Nodes

The algorithms for selecting forwarding nodes in the curmplementation of TBR and
RPSF may select more forwarding nodes than needed. This givepportunity for im-
proving them by designing more efficient forwarding nodestbn algorithm.

There are two ways in which the method of selecting forwagdiodes can be im-
proved. One approach is to modify the method so that the faliwa nodes lying near
the network edge do not select further forwarding noded dfaheir neighbors have been
already covered. The other approach is to modify the forimgrdode selection algorithm
so that the number of selected forwarding nodes are reduced.

The former approach is hard to achieve due to the difficulgyetermining the network
edge. However, some of the edge nodes can be detected byrahédkey have at least
one neighbor in any sector ®80° centered at themselves. They are considered as internal
nodes if the condition holds or edge nodes otherwise. THasnmation is exchanged be-
tween neighboring nodes. Therefore, each node has basiddage about its closeness to
the network edge. Although the information does not deteentine exact network edge, it
is enough for forwarding nodes to determine if they need kecsenore forwarding nodes
further.

The latter approach is more about algorithm design. Theritifg employed in the
current implementation of RPSF only chooses forwardingesdd such a way that each
node in a connected network is covered by one or more selémtedrding nodes. How-
ever, it may select forwarding nodes more than necessacg #iloes not fully meet the
two sub-criteria, selecting as few forwarding nodes asiptesand the selected forward-
ing nodes are as far away as possible. We plan to develop goldrmant efficient node

selection algorithm which closely matches the criteria.
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Multi-path Routing

Multi-path routing is a popular method for addressing fality issue and balancing net-
work load. In multi-path routing protocols, researcheesraore interested in node disjoint
and edge disjoint multi-paths for routing. Supportingable communications and balanc-
ing network load are easier to achieve with the help of nodpuiit or edge disjoint paths.
Although TBR and RPSF are multi-path routing protocolsyttie not exploit any prop-
erty of multi-path. Therefore, utilizing multi-path prapies for reliable communication
and studying its performance is one of our goals.

In the current implementation of TBR and RPSF, a multi-patite, if available, is
discovered in each route discovery process. However, itncare used to support reli-
able communication because the multiple paths may not be diggbint or edge disjoint.
Therefore, we plan to extend them so that they are able tolséarnode disjoint and edge
disjoint paths. In addition, we will measure the relialyilif a route in terms of the number
of node disjoint or edge disjoint paths. In the future, forRFrBnd RPSF, the number of

paths for each route will be considered as a QoS parameter.

Prerequisite Information for RPSF

In the current version of RPSF, it is required that every nimdthe network needs the
distance and direction information of each of its neighbdrkis is possible only if each
mobile node is equipped with smart antennas. We will reléx thquirement and design
efficient forwarding node selection algorithms.

Since obtaining direction information is much more difficthian getting distance in-
formation, we will relax the condition of requiring directi information. Under the current
RPSF, direction information helps in reducing the numbesetécted forwarding nodes and
guarantees that all of the two-hop neighbors of the seleetm/will be covered by some
forwarding nodes. Therefore, to relax the direction infation requirement, hosts running

RPSF need two-hop neighbor information at least.
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By relaxing direction information requirement, the prahlef forwarding node selec-
tion can be described as: for nodefind a set (of one-hop neighbors) as small as possible
such that every two-hop neighbor is at least covered by a nmotlee set. We refer the
neighbors in the set to the forwarding nodes of nédé&his problem has been addressed
in many papers in the literature using various graph moaeds,unit disk graphlQ], rel-
ative neighborhood graph (RNG)Z,58,62], and dominating se, 70, 71]. However, we
still feel the need to propose a new algorithm for forwardiogle selection based on RNG

model, and compare it with the developed algorithms witlarégo the performance.
Quiality of Service

Ad hoc networks are likely to support multimedia applicagovhich require high QoS
requirements. To support such applications, routing patowhich ensure the required
level of QoS need to be developed. We propose to extend ceaddirdeveloped RPSF
to support QoS and also propose to develop new and more efffmietocols that support
QoS.

Under the new RPSF, we plan to only allow partial network cépdhat are used for
QoS control. This is to avoid the scenario in which some nodssrve all of the network

capacity and prevent other nodes from using the network.
Security

As the mobile ad hoc networks have the potential for beindoyepl in critical areas, such
as business meetings, and battle fields, security beconegpartant issue. We will extend
TBR and RPSF to secure routing protocols. The security sstwd need to be addressed

related to routing in mobile ad hoc networks are:

1. Ensuring anonymity: preventing attackers from knowihgu the source and desti-

nation in the routing packets.

2. Privacy: preventing attackers from knowing the foundesu
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3. Alteration: preventing attackers from modifying fourmites.

4. Masquerading: preventing attackers from providing sesitwith false routes to des-

tinations.

5. Denial of service: preventing attackers from initiattng many route requests.

Among the security issues discussed above, ensuring antyngrane of the most im-
portant issues to be addressed. To ensure anonymity, TBRRS#& need to be changed to
source routing, since table driven routing can not be uséiti the addresses of destina-
tions. After the change is made, anonymity can be achievesfflyently changing routes
for data communication from time to time and randomly addiedundant nodes before
the source node and after the destination node respecbtivetiie routes. The changing
routes can complicate the analysis of data traffic patterrd randomly adding redundant
nodes on the routes can hide the source and destination nbeéesh data transmission
from the attackers.

For adding the other security features, efficient encrypéiod authentication mecha-
nisms need to be developed. With these mechanisms availablsecurity features can be
easily incorporated. For example, privacy can be achieyeshlorypting the source routes
for data transmission (and allow each intermediate nodénemdute to get the next hop
easily); alterations can be detected by appropriate hasttifuns; and masquerading and
denial of service attacks can be prevented given well defingdentication mechanisms.
Therefore, our future work here mainly focuses in the entboyypand authentication mech-

anisms that are deployable in mobile ad hoc networks.
Fault-Tolerance

For applications in environments such as battlefields stiésareas, and natural habitats,
mobile nodes could fail, which may partition the networkuF#olerance provides the ca-
pability for networks to continue functioning in the preserof failed nodes. Nevertheless,

not.much.work-has.been done in the area of fault tolerance biilenad hoc networks.
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In the literature, there are two major fault tolerance soe®mmamely, checkpointing-
recovery and redundancy. Under the former scheme, the txgcitates of a process
are checkpointed from time to time. When a process failsptioeesses involved in the
computation can be restarted from the latest consisteatistates. Under the later scheme,
nodes prone to failure are deployed with more than one idaintopies (nodes), but only
one copy (called primary copy) is active and participatesoimputation. The other copies
(called secondary copies) monitor the behavior of the piyraapy and change their status
according to the executing status of the primary copy. Whenprimary copy fails, one
of the secondary copies will be elected as the new primary eop take the place of the
failed copy and undertake the computation. Clearly, thesgbieemes have pros and cons in
different applications. For example, the former schemermsered to be better in terms

of costs, while the other scheme is preferable in terms @ivery time.

Copyright© Qiangfeng Jiang 2013
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