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ABSTRACT OF DISSERTATION

ALGORITHMS FOR FAULT TOLERANCE IN DISTRIBUTED SYSTEMS AND
ROUTING IN AD HOC NETWORKS

Checkpointing and rollback recovery are well-known techniques for coping with fail-
ures in distributed systems. Future generation Supercomputers will be message passing dis-
tributed systems consisting of millions of processors. As the number of processors grow,
failure rate also grows. Thus, designing efficient checkpointing and recovery algorithms
for coping with failures in such large systems is important for these systems to be fully uti-
lized. We presented a novel communication-induced checkpointing algorithm which helps
in reducing contention for accessing stable storage to store checkpoints. Under our algo-
rithm, a process involved in a distributed computation can independently initiate consistent
global checkpointing by saving its current state, called a tentative checkpoint. Other pro-
cesses involved in the computation come to know about the consistent global checkpoint
initiation through information piggy-backed with the application messages or limited con-
trol messages if necessary. When a process comes to know about a new consistent global
checkpoint initiation, it takes a tentative checkpoint after processing the message. The ten-
tative checkpoints taken can be flushed to stable storage when there is no contention for
accessing stable storage. The tentative checkpoints together with the message logs stored
in the stable storage form a consistent global checkpoint.

Ad hoc networks consist of a set of nodes that can form a network for communication
with each other without the aid of any infrastructure or human intervention. Nodes are
energy-constrained and hence routing algorithm designed for these networks should take
this into consideration. We proposed two routing protocolsfor mobile ad hoc networks
which prevent nodes from broadcasting route requests unnecessarily during the route dis-
covery phase and hence conserve energy and prevent contention in the network. One is
called Triangle Based Routing (TBR) protocol. The other routing protocol we designed is
called Routing Protocol with Selective Forwarding (RPSF).Both of the routing protocols
greatly reduce the number of control packets which are needed to establish routes between
pairs of source nodes and destination nodes. As a result, they reduce the energy consumed
for route discovery. Moreover, these protocols reduce congestion and collision of packets
due to limited number of nodes retransmitting the route requests.
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Chapter 1

Introduction

This thesis makes contribution in the following two areas, namely, (i) checkpointing and

rollback recovery in distributed systems and (ii) routing in mobile ad hoc networks. In

this chapter, we briefly describe the problems addressed andsolutions proposed in this

dissertation in these areas.

1.1 Checkpointing and Rollback Recovery in Distributed
systems

A distributed system is a set of computers connected by a communication network. A

distributed computation is a set of processes running in a distributed system trying to solve

a specific problem. Processes involved in a distributed computation communicate with each

other by sending messages to each other over the communication network. Current day

supercomputers are distributed systems and applications running on these supercomputers

are distributed computations.

As the number of processors in a distributed system grows, failure rate also grows.

So, handing failures efficiently in such systems is an important problem. Checkpointing

and rollback recovery are established techniques for handing failures in such systems. To

recover from failures, the state of the processes involved in a distributed computation are

saved to stable storage periodically; when a failure occurs, all the processes involved in the

computation are restarted from a previously saved state that represents a consistent state of

1
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the computation.

1.1.1 Optimistic Checkpointing and Recovery Algorithm

Based on how checkpoints of processes are taken, existing checkpointing algorithms can

be classified into three main categories –uncoordinated, coordinated[11, 33, 36, 41, 59],

and communication-induced[2, 34, 43, 45]. In uncoordinatedcheckpointing, processes

take local checkpoints without any coordination. To recover from a failure, the failed pro-

cess determines a consistent global checkpoint by communicating with other processes

and all the processes rollback to that consistent global checkpoint. Since multiple check-

points are stored,uncoordinatedcheckpointing is not a storage resource efficient approach.

In order to achieve domino-free recovery,coordinatedcheckpointing schemes have been

proposed [11,33,36,41,59]. In this approach, processes synchronize their checkpointing

activities by passing explicit control messages so that a globally consistent checkpoint is

always maintained in the system.Communication-inducedcheckpointing is a hybrid of

uncoordinatedand coordinatedcheckpointing schemes. Undercommunication-induced

checkpointing algorithms [2, 34, 43–45], processes are allowed to take local checkpoints

independently, and the number of useless checkpoints is minimized by forcing processes

to take communication-induced (forced) checkpoints undercertain situations. Hence, this

class of algorithms overcome the disadvantages ofuncoordinatedandcoordinatedcheck-

pointing algorithms, and have the advantages of both coordinated and uncoordinated check-

pointing algorithms.

Communication-inducedcheckpointing appears to be an attractive approach for check-

pointing in distributed systems. However, existing algorithms in this category have the

following drawbacks: Several processes may take checkpoints simultaneously which can

cause network contention and hence impact the checkpointing overheadand extend the

overall execution time [65, 66]. In general, communication-induced checkpoints have to

be taken before processing a received message, which may significantly prolong the re-

2
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sponse time for processing the corresponding received messages. Moreover, communi-

cation pattern may induce large number of communication-induced checkpoints since pro-

cesses have to take their local checkpoints (including communication-induced checkpoints)

immediately after specified conditions hold. We address this issue and propose an “Opti-

mistic” [1,19] checkpointing algorithm.

The optimistic checkpointing algorithm allows processes to save checkpoints and mes-

sage logs in memory first and then flush them to stable storage when there is no contention

for accessing stable storage. Each checkpoint taken by our algorithm is composed of a

tentativecheckpoint representing the state of the process and a set ofmessages logged after

taking thetentativecheckpoint. This mechanism gives processes the liberty of choosing the

time to take tentative checkpoints and hence no checkpoint needs to be taken before pro-

cessing any received message. Furthermore, processes are able to choose their convenient

time for writing the tentative checkpoints and the associated message logs to stable storage

at the network file server. This helps in minimizing network contention for accessing stable

storage.

1.2 Routing in Mobile ad hoc Networks

With recent advances in wireless communication technology, wireless networks have be-

come increasingly popular. There are several types of wireless networks including wireless

local area networks, mobile ad hoc networks, sensor networks and cellular networks. In

this dissertation, we focus on routing algorithms for mobile ad hoc networks.

Mobile ad hoc networks generally have the following characteristics: dynamically

changing network topology, limited network bandwidth, energy constrained nodes, and

limited physical security. Due to the dynamic nature of the topology, there are no fixed

routers in mobile ad hoc networks; every node in the network acts as a router also. Design-

ing efficient routing algorithms that take the energy constraint of nodes and the dynamically

changing topology of the network into consideration is important.

3
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Routing algorithms can be broadly classified as table drivenalgorithms, demand driven

algorithms, and position based algorithms. Table driven routing algorithms maintain routes

from each node to every other node in the network proactively. When network topology

changes, the updates are propagated throughout the networkin order to maintain accurate

routing tables. This type of algorithms are not suitable fornetworks with nodes moving

frequently due to the communication costs involved in topology changes. On the other hand

demand driven algorithms requires nodes to establish routes only when a source node needs

a route to a destination node. In this case, the source node initiates a route discovery process

within the network. The process is completed once a route is found or is terminated when

no possible routes to the destination exists. An established route is maintained until it is no

longer needed or the route breaks due to the mobility of the nodes on the route. Position

based routing algorithms rely on geographic position information to discover routes to

destinations. In this dissertation, we present two demand driven routing algorithms we

designed for mobile ad hoc networks. Next, we briefly discussthe characteristics of these

two routing protons.

1.2.1 Triangle Based Routing

Many of the existing demand driven routing algorithms for adhoc networks employ simple

flooding mechanism to disseminate route request messages during route discovery phase.

Under these algorithms, a source node needing a route to a destination, broadcasts a route

request message to all nodes within its transmission range.Each node receiving this mes-

sage rebroadcasts the message if it has not already done so and this process continues until

all nodes that are reachable from the source receive this message. When the destination

node receives this message, it sends a route reply message which travels along the route

traversed by the route request in the reverse direction and reaches the source, establishing

the route from the source to the destination. Under this approach each node reachable from

the source forwards the route request message once, which leads to redundant rebroadcast-

4
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ing of route request messages. In dense networks, this approach will result in high network

contention, high network load, and high network delay.

We developed two routing algorithms which address this issue. Our algorithms reduce

the redundant rebroadcasting of the route requests. In bothalgorithms, we assume that

all nodes lie in the same plane and they all have the same transmission rangeR. In the

first algorithm, we divide the plane into a number of equilateral triangle areas as shown

in Figure1.1. Each triangle area is assigned a unique identifier called Absolute Location

Identifier. All nodes in a triangle area know the identifier and exchange it with their neigh-

bors periodically. This way, each node in the network has approximate knowledge about its

neighbor locations. Based on this information, a nodeb is able to decide whether and when

to forward a route request message received from a node. Redundant messages are greatly

suppressed under this approach. We call this algorithm Triangle based Routing Algorithm.
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Figure 1.1: Plane divided into triangle areas

1.2.2 A Routing Algorithm with Selective Forwarding for ad hoc Net-
works

The other algorithm which we call Routing Algorithm with Selective Forwarding (RPSF),

allows each node to select a subset of its neighbors to forward route requests. Since only a
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small subset of the nodes receiving a route request forward the route request, this approach

significantly reduces the routing overhead, especially in dense networks. We theoretically

prove that this approach is guaranteed to find a route to the destination if one exists. We

compare the performance of our algorithm with the well knownAd hoc On-demand Dis-

tance Vector (AODV) routing algorithm. On average, our algorithm needs less than 12.6%

of the routing-control packets needed by AODV. Simulation results also show that our al-

gorithm has a higher packet-delivery ratio and lower average end-to-end delay than AODV.

1.3 Organization of this Dissertation

Rest of this dissertation is organized as follows. In Chapter 2, we present an optimistic

checkpointing and message logging approach for consistentglobal checkpoint collection

in distributed systems. This allows a process to independently initiate consistent global

checkpointing by saving its current state, called a tentative checkpoint. Recording of a

consistent global checkpoint of the distributed computation is complete when all the pro-

cesses involved in the computation have taken and saved their tentative checkpoints and the

associated message logs to stable storage. In Chapter3, we present a routing algorithm,

called Triangle Based Routing (TBR) algorithm, which utilizes Relative Location Identi-

fier (RLI) to limit the number of route requests sent over the network and hence improves

the efficiency in routing for static sensor networks. We present another routing algorithm,

Routing Algorithm with Selective Forwarding for MANETs (RPSF) in Chapter4. RPSF

employs relative neighborhood information to suppress thenumber of route requests prop-

agated. This is similar to the TBR algorithm. The two algorithms differ in the way in which

they try to reduce the redundant rebroadcasting of route requests. Under RPSF, a node for-

wards a received route request packets only when the packetstell them to do so while nodes

running TBR algorithm elect to forward / discard the packetsbased on local information it

has about the nodes which were already covered by the route request. Finally, Chapter5
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concludes this dissertation and discusses future researchdirections.

Copyright c© Qiangfeng Jiang 2013
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Chapter 2

Checkpointing and Recovery in
Distributed Systems

2.1 Introduction

Checkpointing and rollback recovery are popular approaches for handling failures in dis-

tributed systems. Existing checkpointing algorithms can be classified into three main cat-

egories –uncoordinated, coordinated[11,33,36,41,59], andcommunication-induced[2,

34, 43, 45]. In uncoordinatedcheckpointing, processes involved in a distributed compu-

tation take local checkpoints without any coordination. Torecover from a failure, the

failed process determines a consistent global checkpoint by communicating with other

processes and all the processes rollback to that consistentglobal checkpoint. Message

logging [28, 30, 60, 61] has been suggested in the literature to cope with the dominoef-

fect. Since multiple checkpoints are stored,uncoordinatedcheckpointing is not a storage

resource efficient approach. Moreover, some or all of the checkpoints taken may not be

part of any consistent global checkpoint and hence are useless. Hence, in the worst case,

all processes may have to be restarted from the beginning when one process fails.coor-

dinatedcheckpointing schemes have been proposed [11, 33,36, 41,59] to prevent useless

checkpoints. In this approach, processes synchronize their checkpointing activities by pass-

ing explicit control messages so that a globally consistentcheckpoint is always maintained

in the system.Communication-inducedcheckpointing is a hybrid ofuncoordinatedand
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coordinatedcheckpointing schemes. Undercommunication-inducedcheckpointing algo-

rithms [2, 34, 43–45], processes are allowed to take local checkpoints independently, and

the number of useless checkpoints is reduced by forcing processes to take communication-

induced (forced) checkpoints under certain situations. Hence, this class of algorithms over-

come the disadvantages ofuncoordinatedandcoordinatedcheckpointing algorithms, and

have the advantages of both coordinated and uncoordinated checkpointing algorithms.

Communication-inducedcheckpointing appears to be an attractive approach for check-

pointing in distributed systems. However, existing algorithms in this category have the

following drawbacks: Several processes may take checkpoints simultaneously which can

cause network contention for accessing stable storage and hence impact the checkpoint-

ing overheadand extend the overall execution time [65, 66]. In general, communication-

induced checkpoints have to be taken before processing a received message, which may

significantly prolong the response time of those corresponding received messages. More-

over, communication pattern may induce large number of communication-induced check-

points. Processes have to take their local checkpoints (including communication-induced

checkpoints) immediately after specified conditions hold.

We use the term “Optimistic” [1,19] because our algorithm saves checkpoints and mes-

sage logs in memory first and then flushes them to stable storage to prevent contention for

accessing stable storage. Each checkpoint taken by our algorithm is composed of atentative

checkpoint representing the state of the process and a set ofmessages logged after taking

the tentativecheckpoint. This mechanism gives processes the liberty of choosing the time

to take tentative checkpoints and hence no checkpoint needsto be taken before processing

any received message. Furthermore, processes are able to choose their convenient time for

writing the tentative checkpoints and the associated message logs to stable storage at the

network file server. This helps in reducing network contention for access to stable storage.

Moreover, our algorithm does not incur additional overheaddue to communication-induced

checkpoints, unlike many other existing algorithms.
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The rest of this chapter is organized as follows. First, we discuss related work in Sec-

tion 2.2. In Section2.3 we present the system model and background. Then, Section2.4

describes ourcommunication-inducedcheckpointing algorithm and the recovery algorithm.

We present the performance evaluation of our checkpointingalgorithm and also compare

our algorithm with one other algorithm in Section2.5. Thereafter, we conclude in Sec-

tion 2.6.

2.2 Related Work

In this section, we briefly review previously proposed algorithms related to our checkpoint-

ing algorithm.

Barigazzi and Strigini [3] presented acoordinatedcheckpointing algorithm in which

they assume that all communications between processes are atomic. Koo and Toueg [36]

relaxed this assumption. Some other works [33,36] have focused on reducing the number

of synchronization messages and the number of forced checkpoints during checkpoint-

ing. These algorithms force relevant processes to block during the checkpointing process,

which will degrade system performance [20]. Chandy and Lamport [13] presented the

first non-blocking algorithm forcoordinatedcheckpointing. However, it leads to a mes-

sage complexity ofO(n2). Silva et al. [59] also addressed this issue and presented another

non-blocking algorithm.

Cao and Singhal [11] presented a min-process and non-blocking algorithm. Thisnon-

blocking algorithm is based on the concept of “mutable checkpoint”, which can be saved

anywhere, e.g., the main memory or the local disk. Therefore, the algorithm avoids the

overhead of transferring “mutable checkpoints” to the stable storage at the file server across

the network. Moreover, it forces only a minimum number of processes to save their check-

points on the stable storage. Mandal and Mukhopadhyaya [42] presented a checkpointing

algorithm in which processes are arranged in a ring. Processes are allowed to take check-

points independently anytime in a predetermined time interval, called total checkpointing
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time (TCT). Once a process takes a checkpoint, it sends a checkpoint request to the next

process in the ring. A process receiving the checkpoint request has to take a checkpoint if

it did not take a checkpoint in that interval so far and then forwards the checkpoint request

to the next process in the ring and this continues. There are two drawbacks with this algo-

rithm. One is that clocks need to be synchronized so that eachprocess has the same view

of the checkpoint interval. The other problem is, if a process takes a checkpoint early in the

interval TCT, it will force all other processes to take checkpoints sequentially which will

cause contention at stable storage. In our algorithm, a process does not send any control

message for taking checkpoints unless it is necessary. Moreover, when a process receives a

message from a process that already took a tentative checkpoint, it does not have to take a

checkpoint immediately; it can take checkpoint after processing the message. In addition,

the checkpoint taken need not be flushed immediately to stable storage, thus preventing

contention for stable storage.

Network contention that arises due to multiple processes simultaneously trying to store

local checkpoints to the stable storage simultaneously cansignificantly increase the check-

pointingoverheadand extend the total execution time of the distributed computation [65,

66]. Contention for stable storage can be mitigated bystaggeringthe checkpoints [57].

Staggeredcheckpointing attempts to prevent two or more processes take checkpoints at the

same time, thereby reducing contention for stable storage.To the best of our knowledge,

checkpointstaggeringhas previously been proposed only forsynchronous, or coordinated,

checkpointing algorithms [57, 66]. These algorithms are referred to as staggered check-

pointing algorithms. Plank [57] proposed a variation of the Chandy-Lamport algorithm [13]

that staggers alimited number of checkpoints depending on the network topology. How-

ever, a completely connected topology would subvert staggering in this algorithm. Based

on Plank’s observation, Vaidya [66] proposed another coordinated checkpointing algorithm

that staggersall checkpoints. Like Plank [57] and Chandy-Lamport [13], Vaidya’s algo-

rithm [66] uses a coordinator to initiate the checkpointing process.It has two phases. In
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the first phase, the coordinatorP0 takes a physical checkpoint (i.e., saves its current state in

stable storage) and sends atakecheckpointmessage to the next processP1. Upon receipt

of the takecheckpointmessage, processPi takes a physical checkpoint and resends it to

processPj, wherei>0 andj = (i+1) modn. The phase is terminated when the coordinator

P0 receives thetakecheckpointmessage from the last processPn−1. In the second phase,

the channel states, called logical checkpoints, are recorded. The set of logical checkpoints,

together with the physical checkpoints, form a consistent global state. The algorithm suc-

cessfully staggers all physical checkpoints. However, as shown in our simulation results,

contention for stable storage always exists for taking the logical checkpoints. In terms

of the number of collisions due to the logged messages, Vaidya’s algorithm [66] always

performs worse, compared to our algorithm.

2.3 Background

2.3.1 System Model

A distributed computation consists ofN sequential processes denoted byP0, P1, P2, · · ·,

andPN−1 running concurrently on a set of computers in the network. Processes do not

share a global memory or a global physical clock. Message passing is the only way for pro-

cesses to communicate with one another. The computation is asynchronous: each process

evolves at its own speed and messages are transmitted through communication channels,

whose transmission delays are finite but arbitrary. Channels are assumed to be FIFO and

the computation is assumed to be piecewise-deterministic [19, 21]. Elnozahy et al. [19]

present an excellent survey of the state of the art in checkpointing and recovery. Messages

generated by the underlying distributed computation will be referred to asapplication mes-

sages. Explicit control messages generated by checkpointing algorithm will be referred to

ascontrol messages. In our algorithm, limited amount of control messages are generated

for the collection of consistent global checkpoint, only when necessary.
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2.3.2 Consistent Global Checkpoints

The execution of a process is modeled by three types of events– the send event of a mes-

sages, the receive event of messages and internal events. The states of processes depend on

one another due to interprocess communication. Lamport’shappened beforerelation [39]

on events, hb−→, is defined as the transitive closure of the union of two otherrelations:

hb−→ = (
xo−→ ∪ m−→)+. The xo−→ relation captures the order in which local events of a

process are executed. Theith event of any processPp (denotedep,i) always executes before

the(i + 1)st event:ep,i
xo−→ ep,i+1. The m−→ relation shows the relation between the send

and receive events of the same message: ifa is the send event of a message andb is the

corresponding receive event of the same message, thena
m−→ b [45,48].

A local checkpoint of a process is a recorded state of the process. A checkpoint of a

process is considered as a local event of the process for the purpose of determining the

existence of happened before relation among checkpoints ofprocesses. Each checkpoint

of a process is assigned a unique sequence number. The checkpoint of processPp with

sequence numberi is denoted byCp,i.

The send and the receive events of a messageM are denoted respectively bysend(M)

andreceive(M). So, send(M)
hb−→ Cp,i if messageM was sent by processPp before

taking the checkpointCp,i. Also, receive(M)
hb−→ Cp,i if messageM was received and

processed byPp before taking the checkpointCp,i. send(M)
hb−→ receive(M) for any

messageM . The set of events in a process that lie between two consecutive checkpoints is

called a checkpointing interval.

A global checkpoint of a distributed computation is a set of checkpoints containing one

checkpoint from each process involved in the distributed computation. An orphan message

M with respect to a global checkpoint is a message whosereceive(M) event is recorded

in the global checkpoint but the correspondingsend(M) event is not recorded. A global

checkpoint is said to be consistent if there is no orphan message with respect to that global

checkpoint. Figure2.1shows two global checkpointsS1 andS2. ClearlyS1 is a consistent
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global checkpoint whileS2 is NOT a consistent global checkpoint sinceM5 is an orphan

message with respect toS2.

Next, we present our algorithm.

P0

M 1

S S

P1

2

P3

M2

M3

M4

M5

M6

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Checkpoint

Checkpoint

1 2

P Checkpoint
Checkpoint

Figure 2.1: Global checkpoints

2.4 Algorithm

2.4.1 Notations

Following are the notations used in describing the algorithm and its correctness proof.

• Ci,k denotes the (permanent) local checkpoint taken byPi. It is composed of two

parts – a tentative checkpointCTi,k recording the state of the process and a set of

logged messageslogSeti,k associated with the checkpoint.

– CTi,k denotes the tentative checkpoint taken byPi with checkpoint sequence

numberk. It is usually saved in memory first and then flushed to stable storage

after recording the associated log, namely,logSeti,k or whenever there is no

contention for accessing stable storage.
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– logSeti,k denotes the set containing all messages sent and received byPi after

taking the tentative checkpointCTi,k and before the checkpointCi,k is finalized.

We refer to the operation of flushing the tentative checkpoint and the log of

messages to stable storage asfinalizing the tentative checkpoint. We explain

the steps taken for finalizing a tentative checkpoint in Section 2.4.4.

Thus, we haveCi,k = CTi,k ∪ logSeti,k.

• CFEi,k denotes the event that represents the finalizing operation of checkpointCi,k.

Therefore, all sending and/or receiving events of messagesin logSeti,k happen before

CFEi,k. For any evente of Pi, we have

e
hb−→ Ci,k ⇐⇒ e

hb−→ CFEi,k. (2.1)

• Sk denotes the global checkpoint composed of checkpoints withsequence numberk

from each process. Thus,Sk = {Ci,k|i ∈ {0, 1, · · · , N − 1}}.

2.4.2 Basic Idea

The basic idea behind our algorithm is as follows: Any process can initiate taking a con-

sistent global checkpoint. A process accomplishes this by saving its state (called a tenta-

tive checkpoint) and then piggy-backing this information with each application message it

sends after that. When a processPi receives a message from a processPj, it comes to know

whetherPj has taken a tentative checkpoint as a result of its own consistent global check-

point initiation or as a result of the initiation of some other process. WhenPi comes to

know about a new initiation of consistent global checkpoint, it takes a tentative checkpoint.

Each checkpoint taken is assigned a sequence number which isone more than its previous

checkpoint. After a process takes a tentative checkpoint, it continues logging all the mes-

sages sent and received in its local memory until it comes to know that all other processes

have taken a tentative checkpoint corresponding to its current tentative checkpoint. When
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a process comes to know that all the processes have taken a tentative checkpoint that cor-

responds to its own current tentative checkpoint, it flushesits current tentative checkpoint

(if it has not already done so) and the associated message logto stable storage. We call the

process of flushing a tentative checkpoint and its associated message log into stable storage

as “Finalizing the Checkpoint”. A process is not allowed to initiate a new consistent global

checkpoint until it finalizes its current tentative checkpoint. A process, initially, starts in the

normalstatus. After a process takes a tentative checkpoint, its status changes from normal

to tentative. After a tentative checkpoint is finalized, its status changes back to normal.

The set of finalized checkpoints with a given sequence numberm, denoted bySm, forms a

consistent global checkpoint as proved in Theorem2.2. Next, we illustrate the basic idea

behind our algorithm with an example.

An Example

P0

M 1

C3,0

C2,0

C1,0

C0,0 CT0,1

CT1,1

CT2,1

CT3,1

F

F

F

F

1

P2

P3

2

3M

4M

5M

6M

7M

8M

9M

M

P

Figure 2.2: An example illustrating the basic idea behind our algorithm

For explaining the basic idea behind our algorithm, we use the space-time diagram of

a distributed computation consisting of four processes shown in Figure2.2. P0, P1, P2

andP3 are the four processes involved in the computation. Initially, the status of each pro-
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cess isnormaland their initial checkpoints, with sequence number0, are marked by solid

rectangular boxes in the figure. SupposeP0 initiates consistent global checkpointing by

taking a tentative checkpointCT0,1. After taking checkpointCT0,1, it changes its status

from normal to tentativeand starts logging in memory all messages sent and received by

it until it finalizes this checkpoint. Then,P0 sends a messageM2 to P1. Upon receiv-

ing M2, P1 notices thatP0 has takenCT0,1. Therefore,P1 takes a tentative checkpoint

CT1,1 after processingM2 andP1’s status changes fromnormal to tentative. Similarly,P2

andP3 take tentative checkpointsCT2,1 andCT3,1 after receiving messagesM4 andM3

respectively.P1 knows that the status ofP0 andP1 is tentativebefore sending the mes-

sageM3; P1 piggy-backs this information withM3. Therefore,P3 knows that the status

of P0, P1, andP3 is tentativebefore sending the messageM5. Upon receivingM5, P2

knows that the status of all processes istentative. At this point,P2 finalizes the checkpoint

with sequence number1 by flushing the tentative checkpointCT2,1 (if it has not already

done so) and the set of logged messages{M5,M6} into the stable storage. And we have

C2,1 = CT2,1 ∪ {M5,M6}. An “F” mark in the figure indicates the event of finalizing the

current tentative checkpoint. After a process finalizes itstentative checkpoint, its status

becomesnormal(after a process takes a tentative checkpoint, it is allowedto take another

tentative checkpoint only after finalizing the already taken tentative checkpoint). Similarly,

P1 finalizes its tentative checkpoint after the messageM7 is received. When messageM8 is

received,P3 knows thatP1 has finalized its checkpoint, which indicates that all processes

have taken a tentative checkpoint corresponding to its current tentative checkpoint. There-

fore,P3 finalizes its current tentative checkpoint. Note thatM8 should not be included in

the set of logged messages inC3,1 since it was sent afterP1 finalizedC1,1. Similarly, P0

finalizes the checkpointC0,1 upon receivingM9 without includingM9 in the message log.

Now, a consistent global checkpointS1 = {C0,1, C1,1, C2,1, C3,1} has been recorded.

17



www.manaraa.com

Some Comments

In the example given above, there is only one initiator of theconsistent global checkpoint

S1. This is primarily to make the example easily understandable. However, under our al-

gorithm, multiple processes can concurrently initiate consistent global checkpointing by

taking a tentative checkpoint. A problem with this basic algorithm is that a tentative check-

point may never be finalized by a process if it does not receive(sufficient) messages from

other processes. For example, messages such asM5, M7, M8 andM9 are needed for the

four processes to finalize their checkpoints in Figure2.2. So, the basic checkpointing algo-

rithm will not work in the absence of sufficient number of application messages that help

each process know the status of every other process in a timely manner. We call this as

a consistent global checkpointconvergenceproblem and explain in Section2.4.5how it

can be addressed by using limited number of control messageswhen necessary. Next, we

introduce the data structures needed for presenting the basic algorithm.

2.4.3 Data Structures

Each processPi maintains the following data structures.

1. csni: An integer variable containing the sequence number of the current checkpoint

of processPi. The checkpoint representing the initial state ofPi has sequence num-

ber 0. Pi setscsni to 0 initially. csni is incremented by one when a new tentative

checkpoint is taken.

2. stati: A variable representing the current status of processPi. The status of a process

can betentativeor normal. The status of a processPi is updated as follows:Pi’s

status is set tonormal initially. Pi’s status changes totentativeimmediately after

Pi takes a tentative checkpoint. AfterPi knows that the status of all processes is

tentative(through the information piggy-backed on the application messages),Pi

sets its status back tonormalafter finalizing its current tentative checkpoint.
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3. logSeti: The set of messages logged atPi after it takes a tentative checkpoint. When

stati is set totentative,Pi setslogSeti to empty and starts logging messages sent and

received byPi into logSeti. Thus,logSeti contains messages sent and received by

Pi after a tentative checkpoint is taken and before that checkpoint is finalized. When

the status of the process changes fromtentativeto normal, the tentative checkpoint

and the correspondinglogSeti are flushed to the stable storage.

4. tentSeti: The tentative process setmaintained atPi. Whenstati is set tonormal,

tentSeti is set to empty. WhenPi takes a tentative checkpoint,Pi setstentSeti to

{Pi}. Upon receiving a message,Pi setstentSeti to be the union oftentSeti and

thetentative process setpiggy-backed in the message. Thus, this set contains the set

of processes that have taken a tentative checkpoint, to the knowledge ofPi.

5. allPSet: This is the set of all processes, namely,{P0, P1, · · · , PN−1}.

2.4.4 The Checkpointing Algorithm

We assume that each process takes an initial checkpoint representing the initial state of the

process. The sequence number of the initial checkpoint is set to 0. Moreover, no process is

allowed to take a new checkpoint when its status istentative.

Consistent Global Checkpointing Initiation

Any process whose status isnormalcan take a new tentative checkpoint, thereby initiating

consistent global checkpointing. When a processPi takes a tentative checkpoint, it changes

its status fromnormal to tentative, increases the checkpoint sequence numbercsni by one

and assigns it as the sequence number for the tentative checkpoint, setslogSeti to empty,

and initializestentSeti to {Pi}. At any time,tentSeti is the set of all processes that have

taken a tentative checkpoint corresponding to the current tentative checkpoint ofPi, to the

knowledge ofPi. After Pi takes a tentative checkpoint, it starts logging intologSeti all the
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messages sent and received until its status changes back tonormal. Csni andtentSeti are

piggy-backed with each application message.

Sending Messages

Each processPi piggy-backs with each application message the current value ofcsni, stati

and tentSeti. The value ofcsni, piggy-backed with messages, helps the receiver deter-

mine if the sender took a new tentative checkpoint, thereby initiating a concurrent or new

consistent global checkpoint collection. These values piggy-backed with a messageM

are denoted byM.csn, M.stat andM.tentSet respectively. A process receiving message

M uses this piggy-backed information to find out whether it is anew consistent global

checkpoint collection initiation or a concurrent global checkpoint initiation; it also comes

to know the processes that have already taken a tentative checkpoint corresponding to this

initiation.

Receiving Messages

Under our algorithm, each process can take a tentative checkpoint independently and con-

currently. Once a process comes to know that all the other processes have taken tentative

checkpoints corresponding to its most recent tentative checkpoint (through a message re-

ceived from a process), it finalizes the tentative checkpoint (Section2.4.4 explains the

procedure of finalizing a tentative checkpoint). After finalizing its most recent tentative

checkpointCi,k, processPi can take the next tentative checkpointCi,k+1 before every other

process has finalized the tentative checkpoint corresponding toCi,k. In such situations, ifPi

sends a messageM after takingCi,k+1 andM is received by processPj before it finalized

Cj,k, thenPj needs to finalizeCj,k first and then process the messageM to prevent orphan

messages. Next, we describe how processPi handles a messageM received from process

Pj.

Case (1)M.stat = stati = normal. In this case, no additional action needs to be taken

except processingM because neitherPi norPj is aware of any new consistent global
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checkpoint initiation.

Case (2)M.stat = stati = tentative. In this case, bothPi andPj have taken a new

tentative checkpoint concurrently. The following four subcases arise:

Subcase (a)M.csn < csni. In this case,Pi has already taken and finalized a tenta-

tive checkpoint with sequence numberM.csn at the time of receivingM andPj

was not aware of this while sendingM . Therefore, no additional action needs

to be taken except processing the message.

Subcase (b)M.csn = csni. In this case,Pi andPj have taken checkpoints that

belong to the same global checkpointScsni
. In this case, firstM is processed

and then in order to know how many processes have taken a tentative checkpoint

that belongs to the global checkpointScsni
, Pi updatestentSeti to be the union

of tentSeti andM.tentSet. If the updatedtentSeti equals toallPSet, Pi

logs the message and then finalizes (Section2.4.4gives the detailed procedure

for finalizing a tentative checkpoint) its tentative checkpoint since all processes

have taken a tentative checkpoint with the same sequence number (i.e., tentative

checkpoints that belong to the global checkpointScsni
) and sets its status to

normal (i.e.,stati = normal).

Subcase (c)M.csn = csni + 1. In this case,Pj finalized the checkpoint with se-

quence numbercsni before sendingM and also has taken a tentative checkpoint

with sequence numberM.csn. Therefore,Pi knows that all processes already

took a tentative checkpoint that belongs to the global checkpointScsni
. Recall

that a process is not allowed to take a new tentative checkpoint until it has fi-

nalized its current tentative checkpoint. Thus,Pi finalizes its current tentative

checkpoint with sequence numbercsni without includingM in the message log

becauseM would be an orphan message with respect to the consistent global

checkpointScsni
. Then, it processes the messageM and initiates next consis-
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tent global checkpointing by taking a new tentative checkpoint with sequence

numberM.csn and also logs the messageM .

Subcase (d)M.csn > csni + 1. In this case,Pj has finalized the checkpoint with

sequence numbercsni + 1. SincePj could have finalized that checkpoint only

after all other processes includingPi have taken a tentative checkpoint with

sequence numbercsni + 1, Pi must have a checkpoint with sequence number

greater than or equal tocsni + 1. This is not possible becausecsni is the

sequence number of the last tentative checkpoint ofPi. So, this case does not

arise. Thus, this case is not shown in the formal descriptionof the algorithm.

Case (3)M.stat = normal andstati = tentative. In this case,P ′
js latest checkpoint has

been finalized before sendingM andPi has taken a tentative checkpoint which is yet

to be finalized. The following three subcases arise:

Subcase (a)M.csn < csni. In this case,Pi has already taken and finalized a ten-

tative checkpoint with sequence numberM.csn at the time of receivingM .

Therefore, no further action needs to be taken in this case except processing the

message.

Subcase (b)M.csn = csni. In this case,Pj has finalized taking the checkpoint with

sequence numbercsni. This meansPj knows that all processes have taken a

tentative checkpoint with sequence numbercsni. HencePi finalizes its current

tentative checkpoint without includingM in the message log (sinceM would

be an orphan message), changes its status back tonormal and then processes

the message.

Subcase (c)M.csn > csni. This meansPj has taken a new checkpoint with se-

quence numberM.csn > csni and has finalized that checkpoint beforePi fi-

nalized the checkpoint with sequence numbercsni. This is impossible because

a process cannot finalize a checkpoint with sequence numberM.csn before
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other processes finalize their checkpoint with sequence numberM.csn−1. So,

this case does not arise.

Case (4)M.stat = tentative andstati = normal. This meansPj ’s latest checkpoint

taken before sendingM has not been finalized while sendingM andPi’s latest

checkpoint has been finalized. In this case,M is processed first and then the fol-

lowing actions are taken. The following three subcases arise:

Subcase (a)M.csn ≤ csni. In this case,Pi has already taken and finalized a tenta-

tive checkpoint with sequence numberM.csn at the time of receivingM . So,

the message is simply processed without taking any additional action.

Subcase (b)M.csn = csni+1. In this case,Pj has taken a new tentative checkpoint

about whichPi comes to know throughM . Therefore,Pi takes a tentative

checkpoint with sequence numberM.csn. The procedure for taking a new

tentative checkpoint is same as that in Section2.4.4. In addition to that,Pi logs

the message and updatestentSeti to be the union oftentSeti(= {Pi}) and

M.tentSet. Thus,Pi getsPj ’s knowledge about the processes that have taken

a tentative checkpoint with sequence numbercsni + 1.

Subcase (c)M.csn > csni + 1. This case is similar tosubcase (d)undercase (2)

and does not arise.

Finalizing a Tentative Checkpoint that belongs to a Consistent Global Checkpoint
with a Given Sequence Number

If the status of a processPi is tentativeand it knows through the messages received from

other processes that the status of all other processes involved in the computation are tenta-

tive (i.e., tentSeti = allPSet), it flushes its current tentative checkpoint (the most recent

tentative checkpoint taken), if it has not already done so, and also the associated message

log logSeti into the stable storage and makes it permanent. Note that thetentative check-

point can be flushed to stable storage any time before finalizing the tentative checkpoint.
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However, the message log associated with the tentative checkpoint needs to be flushed as

soon as a process comes to know that all other processes have taken a tentative check-

point corresponding to its latest checkpoint.The tentative checkpoint together with the

message log stored is called a checkpoint of the process and it is assigned the same

sequence number as the tentative checkpoint stored. Checkpoints with same sequence

number from all the processes form a consistent global checkpoint, as proved in Theo-

rem2.2.

Formal description of the basic checkpointing algorithm isgiven in Figure2.3.

2.4.5 Optimizations

A Convergence Problem

As we noted earlier, the basic checkpointing algorithm presented in the previous section

may not converge if not enough messages are exchanged among processes. To address

this problem, we present a mechanism that utilizes control messages to expedite conver-

gence when necessary. So, control messages are used only if atentative checkpoint has

not been finalized within a predetermined period of time. In the following, we discuss a

mechanism to introduce limited amount of control messages to expedite convergence when

necessary. We introduce three type of control messages – checkpoint begin (CK BGN)

message, checkpoint request (CK REQ) and checkpoint end (CK END) messages. A pro-

cessPi sets a timer when it takes a tentative checkpoint. IfPi does not finalize its tentative

checkpoint before the timer expires, it sends aCK BGNmessage to a pre-specified process,

say P0. Upon receiving the message,P0 takes a tentative checkpoint if it has not yet taken

and then sends aCK REQmessage toP1, P1 does the same and sends it toP2, etc. and

finally CK REQreaches back toP0. After P0 receives the message back, it sendsCK END

message to all the processes. When a process receives theCK END message, it finalizes

its local tentative checkpoint with the sequence number contained in theCK ENDmessage

if it has not already finalized it. It ignores the message if ithas already finalized. Control
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When Pi starts
csni = 0; stati = normal; /* Initialization */

Procedure: takeTentativeCheckpoint(i: integer)
csni = csni + 1; stati = tentative;
tentSeti = {Pi}; /* Include the process id in the set */
logSeti = Ø; /* Initialize the message log to empty set */
Take tentative checkpointCTi,csni

;

When Pi starts to take a checkpoint
takeTentativeCheckpoint(i);

When Pi sends a messageM to Pj

M.csn = csni; /* Piggy-back current value ofcsni, stati, andtentSeti with the message */
M.stat = stati;
M.tentSet = tentSeti;
if stati == tentative then logSeti = logSeti ∪ {M};
Send(M);

When Pi receives a messageM from Pj

if stati == normal then
ProcessM ;
if M.stat == tentative then

if M.csn == csni + 1 then /* Pj has initiated a new consistent global checkpoint */
takeTentativeCheckpoint(i);
logSeti = logSeti ∪ {M}; /* Log the received message */
tentSeti = M.tentSet ∪ tentSeti;

else /* stati == tentative */
logSeti = logSeti ∪ {M}; /* Log the received message */
if M.stat == normal then

if M.csn == csni then /* Pj has finalized the checkpointCj,csni
*/

FlushlogSeti − {M} andCTi,csni
to the stable storage; /* Pi finalizes its checkpointCi,csni

*/
stati = normal;

ProcessM ;
else /* M.stat == tentative */

if M.csn == csni then /* Pj has taken the checkpointCTj,csni
before sending the message */

ProcessM ;
tentSeti = M.tentSet ∪ tentSeti;
if tentSeti == allPSet then /* Each processPk has already takenCTk,csni

*/
stati = normal;
FlushlogSeti andCTi,csni

to the stable storage;
else ifM.csn == csni + 1 then /* Pj has finalizedCj,csni

and took a new tentative checkpoint after that */
stati = normal; /*So,Pi finalizesCi,csni

, excludesM from the log and takes a new tentative checkpoint */
FlushlogSeti − {M} andCTi,csni

to the stable storage;
ProcessM ;
takeTentativeCheckpoint(i);
logSeti = logSeti ∪ {M};
tentSeti = M.tentSet ∪ tentSeti;

Figure 2.3: The Basic Checkpointing Algorithm
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messages are not sent if each global checkpoint can be finalized within the timeout interval.

The tentative process setcan be used to further reduce the number of control messages as

follows:

Case (1) Limiting the number ofCK BGNmessages. As we know, oneCK BGNmessage

is enough to notifyP0 to initiateCK REQmessages for each global checkpoint. In

the method described above every process that times out sendsCK BGNtoP0. Such

redundant messages can be reduced using the information contained intentative pro-

cess set. Suppose it is time forPi to send aCK BGNmessage toP0. Before sending

the message, it checks if there is a processPj that belongs totentSeti andj is less

thani. If Pj exists,Pi does nothing since it knows thatPj or some other process with

process id smaller thanj will send aCK BGNmessage toP0. Otherwise,Pi sends a

CK BGNmessage toP0. Clearly, this method reduces the number ofCK BGNmes-

sages. However, it introduces a new problem, namely, the process with lower process

id may have finalized the checkpoint already and has not exchanged any message af-

terwards. This way,Pi may not be able to finalize the checkpoint. This problem can

be solved by requiringP0 always broadcast aCK ENDmessage to all other processes

when it finalizes a checkpoint.

Case (2) ReducingCK REQmessages. Under the above approach, every process needs to

forward theCK REQmessage once. However, the number ofCK REQmessages can

be further reduced by the following method. Suppose it is time forPi to forward the

message. If it has finalized this checkpoint, it forwards themessage toP0 directly.

Otherwise,Pi looks for a processPj for which the following condition holds.

(j > i) AND (Pj /∈ tentSeti) AND (∀k ∈ {z|i < z < j}, Pk ∈ tentSeti)

If such a processPj is found,Pi forwards the message toPj because all processes

with process ids greater thani and less thanj have already taken a tentative check-

point and there is no need to ask them to take it again. Otherwise, all processes with
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process ids greater thani have already taken a tentative checkpoint. Therefore,Pi

forwards the message toP0 directly.

Figure2.4gives the formal description of how control messages can be used to augment

the basic algorithm to help convergence. In this we useCM to denote a control message. A

CM has two fields, namely,typeandcsn. CM.typecan have one of the three values, namely,

CK BGN, CK REQor CK END. CM.csnis the sequence number of the current tentative

checkpoint of the sender when it sends the control messageCM . CM(atype, acsn) refers

to the control messageCM with CM.type = atype andCM.csn = acsn. For example,

CM(CK BGN, 3) refers to a control messageCK BGNwith csn = 3 piggy-backed with

it.

A timer is used by each process to determine when to send control messages as follows:

A process sets a timer when it takes a tentative checkpoint. When the timer expires, it

initiates sending a control messageCM . The timer is canceled when a process finalizes the

checkpoint or it receives aCM with sequence number equal to that of its current tentative

checkpoint.

We illustrate how control messages help in convergence withan example shown in Fig-

ure2.5. SupposeP1 takes a tentative checkpointCT1,1 first and sends a messageM2 toP2.

Upon receivingM2, P2 takes a tentative checkpointCT2,1. When the timer set forCT1,1

expires,P1 sends aCK BGN message (CK BGN1) to P0 (P2 does not send aCK BGN

message since it knows thatP1 will send such message toP0). Upon receivingCK BGN1,

P0 takes a tentative checkpointCT0,1 and sends aCK REQmessageCK REQ1 to P1.

Thereafter,P1 sends aCK REQ messageCK REQ2 to P3 since it knows thatP2 has

already takenCT2,1. Finally, theCK REQmessageCK REQ3 returns toP0. Now, P0

knows that all processes have already taken a tentative checkpoint with sequence number

1. Therefore, it finalizes its current tentative checkpoint and broadcasts aCK END mes-

sage to every other process and flushes logged application messages andCT0,1 to the stable

storage. Upon receivingCK END, P1, P2 andP3 flush their logged messages and ten-
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When the timer for finalizing the tentative checkpoint onPi expires
if i == 0 then /* P0 initiatesCK REQmessages directly without sending aCK BGN message */

forwardCheckpointRequest(P0 , CM );
else /* i = 1, 3, · · · , orN − 1 */

for eachPk ∈ tentSeti do
if k < i then return; /* Pk or other process with process number less thank will sendCK BGN message toP0 */

SendCM(CK BGN, csni) to P0; /* SendingCK BGN message toP0 */

Procedure: forwardCheckpointRequest(Pi , CM )
if i == N − 1 then k = 0; /* PN−1 forwardsCK REQmessage toP0 directly */
else /* Pi looks for processPj such that the status ofPi+1, Pi+2, · · · , and Pj−1 is tentative */

for k = i+ 1 to N − 1 do
if Pk /∈ tentSeti then break;

if Pk ∈ tentSeti then k = 0; /* The status of all processes with process number greater than i is tentative*/
SendCM(CK REQ, csni) to Pk;

When Pi receivesCM from Pj

if CM.csn == csni + 1 then
if stati == tentative then

FlushlogSeti andCTi,csni
to the stable storage;

takeTentativeCheckpoint(i);
forwardCheckpointRequest(Pi , CM );

else ifCM.csn == csni then
if CM.type == CK BGN then

if stati == tentative then
if CM(CK REQ, csni) has been sentthen return; /* Send theCK REQmessage at most once */
forwardCheckpointRequest(Pi , CM );

else ifCM(CK END, csni) has not been sentthen /* P0 has finished takingCi,csni
*/

SendCM(CK END, csni) to P1, P2, · · · , andPN−1;
else ifCM.type == CK REQ then

if i == 0 then /* P0 initiatesCK END if necessary */
if CM(CK END, csni) has been sentthen return;
SendCM(CK END, csni) to P1, P2, · · · , andPN−1;
if stati == tentative then

stati = normal;
FlushlogSeti andCTi,csni

to the stable storage;
else forwardCheckpointRequest(Pi , CM );

else ifstati == tentative then /* CM.type == CK END */
stati = normal;
FlushlogSeti andCTi,csni

to the stable storage;

Figure 2.4: Augmenting the Basic Algorithm with Control Messages to Speed up Conver-
gence

tative checkpoints with sequence number1 respectively. This way, all processes finalize

the checkpoints with sequence number1 and return tonormalstatus in finite time. Without

these control messages, the original algorithm does not converge in this example. Although

P3 sends out messages such asM5 andM6, it does not receive any message. Therefore,P3

is unable to obtain the status information of other processes, and henceP3 can not finalize

its tentative checkpointCT3,1 without the help of control messages.
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Figure 2.5: An example illustrating the use of control messages in the algorithm

2.4.6 Correctness Proof

We refer to the checkpointing algorithm with control messages as the generalized check-

pointing algorithm. With this definition, we have Theorem2.1.

Theorem 2.1 The generalized checkpointing algorithm converges, i.e.,after a process

takes a tentative checkpoint with a given sequence numbercsn, every process eventually

finalizes a checkpoint with sequence numbercsn.

Proof. We prove this by contradiction. Suppose the generalized checkpointing algo-

rithm does not converge. In other words, there is at least oneprocess, sayPi, that took a

tentative checkpointCTi,k but never finalized the checkpointCi,k.

Depending upon whyPi takesCTi,k, the following two cases arise.

Case (1)Pi takesCTi,k because it receives a messageCM(CK REQ, k) from a process

Pi. Upon receiving such a message,Pi needs to forward the message to a process

Ph and assure that all processes with process number greater than i and less thanh

have already taken a tentative checkpoint with sequence numberk. This is repeated

until the message returns toP0 (PN−1 forwards the message toP0 or some process
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Pj (j < N − 1) forwards it toP0 directly sincePj knows that all processes with

process number greater thanj have taken a tentative checkpoint with sequence num-

ber k). OnceP0 receives the message, it finalizesC0,k and broadcasts a message

CM(CK END, k) to all other processes. Upon receiving this message, each pro-

cess finalizes its tentative checkpoint with sequence number k if it has not already

done so. In particular,Pi finalizesCi,k which is a contradiction to our assumption.

Case (2)Pi takesCTi,k due to other reasons. Then a timer is set whenCTi,k is taken

at Pi. If the timer is canceled due to receiving aCK REQ or CK END message

with sequence numberk, P0 has initiated a messageCM(CK REQ, k). Other-

wise,Pi or some process with process number smaller thani will send a message

CM(CK BGN, k) to P0. Therefore,P0 will receive at least oneCK BGNmessage

with sequence numberk. ThenP0 initiates the process of forwardingCK REQmes-

sages. Similar toCase(1), Pi finalizes the checkpointCi,k which is a contradiction

to our assumption.

Hence the theorem.2

Theorem 2.2 For eachk, the setSk = {Ci,k|i ∈ 0, 1, · · · , N − 1} is a consistent global

checkpoint.

Proof. We prove this by contradiction. SupposeSk is not consistent. Then, there exists

a messageM , sent fromPi to Pj (for somei, j ∈ {0, 1, · · · , N − 1}, i 6= j), such that

Ci,k
hb−→ send(M) AND receive(M)

hb−→ Cj,k.

Depending on the receiving time of the messageM , the following two cases arise.

Case (1) receive(M)
hb−→ CTj,k (a). SinceCi,k

hb−→ send(M), CFEi,k
hb−→ send(M)

(b). SincePi has finalizedCi,k, Pi has known that each processPj has taken tentative

checkpointCTj,k. Therefore,CTj,k
hb−→ CFEi,k (c). From (a), (b) and (c), we

havereceive(M)
hb−→ CTj,k

hb−→ CFEi,k
hb−→ send(M), i.e., receive(M)

hb−→

send(M), a contradiction.
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Case (2)CTj,k
hb−→ receive(M)

hb−→ CFEj,k (a). Similar toCase (1), we haveCFEi,k
hb−→

send(M). Upon receivingM , Pj knows thatPi has finalized the checkpointCi,k.

Therefore, it knows that all other processes have taken a tentative checkpoint with se-

quence numberk. Based on this information,Pj finalizes the checkpointCj,k not in-

cluding messageM in the checkpoint. Therefore, we haveCFEj,k
hb−→ receive(M)

(b). From (a) and (b) we havereceive(M)
hb−→ receive(M) which is a contradiction.

Hence the theorem.2

2.4.7 Recovery Algorithm

In this section, we present a recovery algorithm based on thecheckpointing algorithm. We

make the following assumption for the recovery algorithm.

• At most one process fails at any given time. No other process fails until the recovery

due to a failed process is complete.

We need to add the following data structures to the checkpointing algorithm presented

in Sections2.4.4and2.4.5.

• Each processPi has a variablersni, initialized to 0, to keep track of the total num-

ber of times recovery took place. Each timePi initiates recovery, this variable is

incremented by 1.

Informal Description of the Recovery Algorithm

When a processPi fails, it incrementsrsni by 1 and sendsROLLBACK(rsni, csni) mes-

sage to all the processes; herecsni represents the sequence number of the latest finalized

checkpoint of the processPi. When a processPj receivesROLLBACK(rsni, csni) mes-

sage from processPi, it finalizes the checkpoint with sequence numbercsni if it has not

already done so, and then sendsOKTOROLLBACK(rsni, csni) to Pi. After a process

sendsOKTOROLLBACK message, it blocks (i.e., it neither sends/receives any appli-

cation message nor does any local computation). AfterPi receivesOKTOROLLBACK
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reply from all the processes, it sendsCONFIRMROLLBACK(rsni, csni) message.

After a processPj receivesCONFIRMROLLBACK(rsni, csni) message, it retrieves

the finalized checkpointC with sequence numbercsni, rolls back to the tentative check-

point with sequence numbercsni stored inC, and replays the messages in the log associated

with C and then sendsROLLBACKFINISHED(rsni, csni) message toPi and blocks.

After Pi receivesROLLBACKFINISHED(rsni, csni) from all processes, it sends

PROCEED(rsni, csni) message to all the processes. Upon receiving thePROCEED

message, each process resumes its computation normally.

Formal description of the recovery algorithm is presented in Figure2.6.

When Pi fails and initiates recovery process
rsni = rsni + 1;
SendsROLLBACK(rsni, csni) to all processes; //csni is the sequence number of the latest finalized checkpoint ofPi;

When Pj receivesROLLBACK(rsni, csni) from Pi

if rsnj < rsni then // this is a new recovery initiation
rsnj = rsni;
Finalizes the tentative checkpoint with sequence numbercsni

if it has not already done so;
SendsOKTOROLLBACK(rsni, csni) reply toPi;
Blocks;

After Pi receivesOKTOROLLBACK(rsni, csni) from all processes
SendsCONFIRMROLLBACK(rsni, csni) to all processes;

When Pj receivesCONFIRMROLLBACK(rsni, csni) from Pi

Finds the finalized checkpointC with sequence numbercsni;
Rolls back to the tentative checkpoint contained inC;
Replays the messages in the message log associated withC;
SendsROLLBACKFINISHED(rsni, csni) to Pi;
Blocks;

After Pi receivesROLLBACKFINISHED(rsni, csni) from all processes;
SendsPROCEED(rsni, csni) to all processes;

When Pj receivesPROCEED(rsni, csni)

Pj resumes computation;

Figure 2.6: Recovery algorithm

Correctness of the Recovery Algorithm

A process finalizes its tentative checkpoint with a given sequence number only after it

comes to know that all the other processes have taken their tentative checkpoints with the

same sequence number. When a process fails, all processes roll back to the checkpoint with
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the same sequence number. Note that a checkpoint of a processconsists of the saved state

of the process (tentative checkpoint) and the log of messages sent and received after the

tentative checkpoint was taken and before the tentative checkpoint was finalized. The fact

that the checkpoints of all the processes with the same sequence number forms a consistent

global checkpoint has been proved in Section2.4.6. Thus rolling back the processes to

checkpoints with same sequence number takes the state of theprocesses to a state repre-

sented by a consistent global checkpoint. However, messages lost due to rollback such as

those whose receive event was undone while the corresponding send event has not been

undone are not taken care of. They can be handled using sequence number and message

logging. Moreover, we do not discuss ways for handling concurrent failures. However,

methods similar to the ones used in [44] can be used for handling concurrent failures as

well as handling lost messages, duplicate messages and in-transit messages during recov-

ery.

2.5 Performance Evaluation

In this section, we present the performance evaluation of our algorithm. We denote our

algorithm as OCML (Optimistic Checkpointing and Message Logging approach) for short.

We evaluated our algorithm with respect to the following twoaspects: 1) under what sce-

narios our algorithm converges without using additional control messages and what is the

overhead induced by the control messages; 2) how does it perform compared to Vaidya’s al-

gorithm [66], which we refer to as VaidyaStagger. The comparison focuses on the latency

and network contention for accessing stable storage.

2.5.1 Simulation Model

We consider distributed computations running in an environment that has the following

features.
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• Network environment. All processes run on nodes in a local area network (LAN).

We assume that the average end-to-end message delay is 5 milliseconds.

• Clock drift . We assume that the maximum drift of local clocks at various sites is

100 milliseconds per hour.

• Simulation time. It is set to 100 minutes.

• Checkpoint initiation . We divide the simulation time into 10-minute intervals.

These intervals are called checkpoint intervals. Thus, each process has 10 check-

point intervals during its life time. Each process chooses the time to take tentative

checkpoints randomly in each interval. When control messages are used for conver-

gence, we set the value of timeout for finalizing a checkpointto be 5 minutes. That

is, a process initiates sending control messages if it does not finalize its tentative

checkpoint in 5 minutes.

• Communication model. We simulated under two types of Checkpoint and Commu-

nication Patterns (CCPAT), namely, RANDOM and GROUP, described below:

– RANDOM Communication Pattern: Each processPi ∈ P0, P1, · · · , PN−1 is

able to send an application message to any other processPj ∈ P0, P1, · · · , PN−1

andPi 6= Pj. The destination of each messagem is randomly chosen. Messages

sent are uniformly distributed during the entire simulation time of a process.

– GROUP Communication Pattern: Each processPi ∈ P0, P1, · · · , PN−1 sends/receives

messages only to/from its two neighbor processesP(i−1) mod N andP(i+1) mod N .

This basically means that processes are logically arrangedin a ring and each

process sends messages only to its two neighbors.

We choose these two CCPATs mainly because they are representatives of many

long-running, compute-intensive applications [22]. For example, in the imple-

mentation of Gaussian elimination, in each iteration, a process receives a row
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of the matrix from its predecessor and sends the results of its computation to its

successor. Its communication model among processes is fits into our GROUP

Communication Pattern. Moreover, these two models have been regarded as

two extreme representatives for distributed applicationsin [17]. So we ran our

simulations under these two extreme models to evaluate the performance of our

algorithm. In all the simulation runs, we varied the rate of messages sent per

second by each process from 0.01 to 0.40, on average. Our goalis to study

not only the number of control messages needed under sparse communication

pattern but also the network contention for accessing stable storage under dense

communication pattern.

2.5.2 Simulation Results

In this section, we first present our simulation results regarding (i) under what scenarios our

algorithm converges without using additional control messages and (ii) what is the overhead

induced by the control messages. We also evaluate the numberof messages logged for the

purpose of determining consistent global checkpoint. Thenwe compare the performance

of our algorithm with the algorithm of Vaidya.

1. OCML with control messages vs. OCML without control messages

We evaluated the performance of our algorithm with control messages and with-

out control messages under the RANDOM communication model.We simulated

a distributed computation involving 20 processes. Figure2.7(a) shows the number

of finalized global checkpoints for various message patterns. Ideally, our algorithm

should take 10 consistent global checkpoints since the simulation time is 100 minutes

and the checkpoint interval is 10 minutes. Irrespective of the rate at which messages

are exchanged, our algorithm takes exactly 10 consistent global checkpoints if con-

trol messages are used. This verifies that the use of control messages helps in conver-

gence, especially when application messages are exchangedat a low rate. However,
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Figure 2.7: Statistics by varying number of messages sent per second

without control messages, only 6 consistent global checkpoints are finalized if each

process sends only 0.01 messages per second. This means thatprocesses have to

wait for a long time for finalizing a checkpoint. As the rate ofmessages sent per

second by each process increases, our algorithm converges quickly; it only requires

0.03 messages or more per second to converge without any control messages.

Figure2.7(b) shows the average amount of time (in seconds) needed for taking a

consistent global checkpoint, this time being calculated from the time some process

initiates consistent global checkpointing to the time at which all processes finalize

their tentative checkpoints belonging to this global checkpoint. The average time for

taking a consistent global checkpoint is a little more than 300 seconds if less than
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0.05 messages are sent by each process per second, in which case control messages

are used. If more than 0.05 messages are sent by each process per second, processes

finalize their tentative checkpoints before the timer expires. Therefore, no control

messages is sent in this case. Figure2.7(c) verifies this observation. We also note that

the number of control messages sent are less than 2 times the number of processes

even when only 0.01 messages are sent by each process per second.

Figure2.7(d) shows the number of logged messages for each global checkpoint at

each process. In the figure, the number of logged messages forthe case when no con-

trol message is sent does not change much as the rate of messages sent per second

by each process increases. This also reveals the approximate number of messages

needed for the convergence of our algorithm under this communication model. Since

the logged messages contain messages sent and received at each process, our algo-

rithm requires each process send only 6 to 9 messages per checkpoint interval for it

to converge when 20 processes are involved.

2. Performance of our algorithm compared to Vaidya’s algorithm

Next, we present the performance analysis of our algorithm (denoted as OCML) com-

pared to Vaidya’s staggered checkpointing algorithm [66] (denoted as VaidyaStagger)

in this section. We choose Vaidya’s algorithm mainly because (1) it represents the

staggered checkpointing algorithms which attempt to prevent two or more processes

take checkpoints at the same time in order to reduce contention for accessing stable

storage; (2) to our knowledge, it is the only algorithm that tries to stagger checkpoints

to prevent contention for accessing stable storage; (3) moreover, Vaidya’s notion of

“physical checkpoint+ message log= logical checkpoint” [66], is similar to our

notion of “tentative checkpoints+ message log= finalized checkpoint”.

We compare the performance of our algorithm with Vaidya’s algorithm [66], under

both RANDOM and GROUP communication models.
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First, we compare our algorithm with Vaidya’s algorithm with respect to the average

number of checkpoints (note here checkpoints refer to physical checkpoints under

Vaidya’s algorithm and tentative checkpoints under our algorithm respectively) taken

at the same time by each process. Table2.1shows the results as the rate of messages

sent per second by each process varies from 0.01 to 0.10. Since Vaidya’s algorithm

successfully staggers all physical checkpoints, the average number of physical check-

points taken at the same time under all cases for this algorithm are zero. However,

this goal has been achieved at the cost of large increase in checkpoint latency in

Vaidya’s algorithm [66]. On the other hand, although the average number of tentative

checkpoints taken at the same time in our algorithm is not zero, since each process

is able to store the tentative checkpoint in memory first and choose its convenient

time for writing the tentative checkpoints to stable storage at the network file server,

it doesn’t incur any contention for stable storage in the tentative checkpointing phase

of our algorithm while at the same time decreasing the checkpoint latency.

Table 2.1: Physical checkpoints taken by VaidyaStagger vs. tentative checkpoints taken
by OCML

Average number of checkpoints taken at the same time in each process
# messages/Sec 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

RANDOM
OCML1a 3.15 4.65 5.1 4.95 6.3 6.4 7.25 7.25 7.2 7.4
OCML2b 4.8 4.6 4.65 5.3 6.3 6.4 7.25 7.25 7.2 7.4
Vaidyac 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GROUP
OCML1 4.15 6.25 8.5 8.15 7.95 7.7 7.95 7.15 7.3 6.75
OCML2 8.45 9 8.4 8.2 8.2 8.2 7.4 7.5 7.3 6.75
Vaidya 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aOCML algorithm without control messages
bOCML algorithm with control messages
cVaidya Stagger algorithm [66]

Next, we compare the performance of our algorithm with Vaidya Stagger with re-

spect to the number of logged messages under both RANDOM and GROUP commu-

nication models. Under the RANDOM communication model, Figure2.7(d) shows

the number of logged messages under OCML with CtrlMessages and OCML without

CtrlMessages. Figures2.8(a) and2.8(c) show the performance results of our algo-

rithm compared to VaidyaStagger under RANDOM and GROUP communication
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models respectively, as the rate of messages sent per secondby each process varies

from 0.02 to 0.20. Figure2.8(d) shows the result under GROUP model, as the rate of

messages sent per second by each process varies from 0.20 to 0.40. As expected, un-

der both communication models, when the rate of messages sent per second by each

process increases, our algorithm converges fast and doesn’t need control messages.

Under RANDOM model, as the rate of messages sent per second byeach process in-

creases, the number of logged messages in our algorithm is always smaller than that

of Vaidya Stagger. Under the GROUP communication model, the number oflogged

messages under our algorithm continues to be smaller than that of VaidyaStagger if

the rate of messages sent per second by each process is largerthan 0.08. Figure2.8(b)

shows how the number of logged messages changes with respectto the number of

processes involved in the computation under RANDOM model. The results indicate

a linear increase in the number of logged messages in VaidyaStagger with respect

to the number of processes. On the other hand, increase in thenumber of processes

has only slight impact on the number of logged messages in ouralgorithm, which

indicates that our algorithm is more scalable.

Finally, under both RANDOM and GROUP communication models,we compare

our algorithm and VaidyaStagger with respect to the contention for stable storage

at the network file server that arises due to storing logged messages. Figures2.9(a)

and2.9(c) show the results under RANDOM and GROUP communication models

respectively, as the rate of messages sent per second by eachprocess varies from

0.02 to 0.20. Figure2.9(d) shows the result under GROUP communication model, as

the rate of messages sent per second by each process varies from 0.20 to 0.40. Since

in the second phase of VaidyaStagger, each process takes its logical checkpoint by

logging messages on stable storage after receiving themarkermessage from the co-

ordinator, it means that the coordinator plays the centralized role of synchronizing

the message-logging in each process and it may lead to a single point of failure. It
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Figure 2.8: Number of logged messages under OCML and VaidyaStagger

completely staggers the physical checkpoints, however, contention for access to sta-

ble storage still occurs while storing logged messages [66]. As a result, the number

of collisions due to logged messages in each process is the same as the number of

logical checkpoints taken at each process in VaidyaStagger. However, in our al-

gorithm, under the RANDOM model, Figure2.9(a) shows the average number of

collisions due to logged messages is 3.6 without CtrlMessage, which is 64% less

than that of VaidyaStagger. Under the GROUP communication model, as shown

in Figure2.9(d), as the rate of messages sent by each process varies from 0.21 to

0.40 per second, the average number of collisions due to logged message is 6.3 for

both OCML with CtrlMessages and OCML without CtrlMessages,which is 37% less

40



www.manaraa.com

than that of VaidyaStagger. Figure2.9(b) shows how the number of collisions due

to logged messages changes with respect to the number of processes involved in the

computation under RANDOM model. As expected, when the number of processes

increases, the number of collisions due to logged messages under our algorithm only

has slight impact and it is at least 60% less than that of Vaidya’s algorithm.
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Figure 2.9: Number of collisions due to storing logged messages at the network file server
under OCML and VaidyaStagger

Vaidya’s algorithm [66] successfully staggers all physical checkpoints so that nocon-

tention for stable storage occurs while storing physical checkpoints. However, it does

incur contention for stable storage when messages are logged in its second phase.

Compared to VaidyaStagger, although the average number of tentative checkpoints
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taken at the same time under our algorithm is not zero, it doesn’t incur any con-

tention for stable storage since each process is able to store the tentative checkpoint

in memory first and choose its convenient time for writing thetentative checkpoints

to stable storage at the network file server. For example, based on our simulation

results, we can choose to save the tentative checkpoint together with its correspond-

ing logged messages at the same time when it is finalized or earlier when there is no

contention for stable storage. In reducing contention for stable storage at the network

file server, our algorithm always performs better than Vaidya Stagger. And our algo-

rithm also has other desirable features such as low control messages (or even no con-

trol messages) and less checkpoint latency compared to Vaidya Stagger algorithm.

Moreover, our algorithm is distributed whereas Vaidya’s algorithm is centralized.

2.6 Conclusion

In this chapter, we presented a novelcommunication-inducedcheckpointing algorithm that

makes every checkpoint belong to a consistent global checkpoint. Under this algorithm,

every process stores the tentative checkpoint in memory first and then flushes it to stable

storage when there is no contention for accessing stable storage or after finalizing the tenta-

tive checkpoint. Messages sent and received after a processtakes a tentative checkpoint are

logged into memory until the tentative checkpoint is finalized. Since a tentative checkpoint

can be flushed to stable storage any time before finalizing it,contention for stable network

storage that arises due to several processes storing the checkpoints simultaneously is re-

duced/eliminated. Moreover, unlike existing communication-induced checkpointing algo-

rithms, our algorithm, in general, does not force a process to take a checkpoint before pro-

cessing any received message in order to prevent useless checkpoints. Thus, a process can

first process the received message and then take the checkpoint. This improves the response

time for messages. It also helps a process take the regularlyscheduled basic checkpoints at

those times. If messages are not frequently exchanged amongprocesses, additional control
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messages may be required for the algorithm to collect consistent global checkpoints in a

timely manner. We augmented the basic algorithm with control messages to speed up the

collection of consistent global checkpoints in a timely manner for applications in which

processes do not communicate frequently. We conducted a performance evaluation of the

algorithm and studied the overhead induced by the control messages which also helps in

determining when control messages are needed. We also compared the performance of our

algorithm with Vaidya’s algorithm [66]. In reducing the contention for stable storage at

the network file server, our algorithm always performs better than Vaidya’s algorithm. Our

algorithm also has other desirable features such as the scalability, low control messages

(or even no control messages) and less checkpoint latency compared to Vaidya’s algorithm

algorithm.

Copyright c© Qiangfeng Jiang 2013
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Chapter 3

Triangle-based Routing for Mobile ad
hoc Networks

3.1 Introduction

In recent years, mobile ad hoc (MANET) and wireless sensor networks (WSN) have at-

tracted a lot of attention. These networks are composed of mobile nodes which commu-

nicate with each other wirelessly without the support of anyfixed infrastructure. Unlike

traditional networks, mobile ad hoc and wireless sensor networks do not have dedicated

routers. Each participating node acts as an end system as well as a router. A node may di-

rectly communicate with its immediate neighbors within itstransmission range. When two

nodes that are not within the transmission range of each other need to communicate with

each other, intermediate nodes act as routers to forward thepackets. The design of efficient

routing algorithm for mobile ad hoc and wireless sensor networks could be challenging due

to the infrastructureless nature.

Routing algorithms for mobile ad hoc and sensor networks canbe classified into two

categories: topology-based and position-based. Topology-based routing algorithms use the

information of the existing links in the network to route packets. Examples of topology-

based routing algorithms are AODV [56], WRP [47], DSR [29], and DSDV [54]. In

topology-based routing algorithms, a node typically floodsroute request message in the

network to find a route to a given destination node. Position-based routing algorithms use
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the geographic position information of nodes in the networkto perform packet forwarding.

Examples of position-based routing algorithms are Compass[37], MFR [63], Face-2 [7],

GPSR [31], and AFR [38].

Under topology-based routing, a node wishing to establish aroute to a destination

broadcasts a route request message; each node receiving this route request message re-

broadcasts this request once and this process is repeated byevery node in the network

except the destination node which upon receiving the route request broadcasts a route reply

and route reply travels along the path travelled by the routerequest in the reverse direc-

tion and reaches the source which initiated the route request. This approach leads to great

number of redundant rebroadcasting of route request messages. In dense networks, this du-

plication may result in high network contention, high network load, and high network delay.

To reduce the number of redundant messages, many algorithmshave been developed. They

use different graph models such as unit disk graph [10, 14], relative neighborhood graph

(RNG) [12,58,62,64], and dominating sets [6,70,71]. However, these algorithms do not

work well for networks with mobile nodes.

With these considerations in mind, we propose an algorithm that reduces the redundant

rebroadcasting of route request messages. In the proposed algorithm, we assume that all

nodes lie in the same plane and they all have the same transmission rangeR. We divide the

plane into a number of equilateral triangular regions as shown in Figure3.1. Each triangular

region is assigned a unique identifier called Absolute Location Identifier (ALI). All nodes

in a triangular region know the identifier and exchange it with their neighbors periodically.

This way, each node in the network has a knowledge about the approximate location of its

neighbors. Based on this, a nodeb is able to decide whether and when to forward a received

route request message. Therefore, redundant messages are greatly suppressed when the

knowledge is updated in a timely manner and used appropriately. Before explain this in

detail, we outline related works in Section3.2 followed by the algorithm preliminaries in

Section3.4. We then present the algorithm in Section3.5. Simulation results are discussed
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in Section3.6. Section3.7concludes this chapter.
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Figure 3.1: Plane divided into triangular regions

3.2 Related Works

Routing algorithms in mobile ad hoc networks [9,15,18,23,29,51,54–56,67] have been

extensively studied in recent years. Many topology-based routing algorithms for mobile ad

hoc and sensor networks use a simple broadcasting mechanismthat floods the entire net-

work with route request messages, which leads to redundant propagation of route-request

messages, contention, and collision. Well known algorithms such as AODV [56], DSR [29],

DSDV [54] and TORA [51] use this flooding approach. Broch et al. [9] studied the perfor-

mance of DSDV, TORA, DSR, and AODV. Their results show that the routing overhead of

these algorithms increases quickly as the number of nodes inthe network increases.

A Dynamic MANET On-demand (DYMO) [55] routing algorithm, a descendant of

AODV and DSR, was proposed by Perkins et al. [55], which is suitable for sparse networks.

TBRPF [50] and OLSR [15] are suitable for networks in which a large number of routes are

needed and for applications that can not tolerate the delay due to route discovery. However,

TBRPF reports updates reactively when a link state changes while OLSR reports them
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periodically. Therefore, TBRPF and OLSR may not work well innetworks where nodes

move quickly. In such a scenario, TBRPF may send a large number of updates into the

network and nodes may have too many outdated links in its route table if OLSR is used.

The Zone Routing Protocol (ZRP) [23] uses a hybrid approach for maintaining routes.

Under this algorithm, each host proactively updates its routing table for all destinations

within its zone. For destinations outside its zone, a node employs a reactive approach to

find routes on demand.

Some routing algorithms use a connected dominating set [67] as a backbone network

to minimize the number of nodes that participate in forwarding route-request packets, and

hence reduce overlapping route-request propagation. A disadvantage of this approach is

that the selected “core” or “backbone” nodes may drain theirbattery quickly. A solution

to overcome this problem is to periodically change the set of“backbone” nodes. However,

the complexity of computing an approximate minimal dominating set of a wireless network

(computing a truly minimal dominating set is known to be NP-complete) may result in high

overhead. Moreover, maintaining this dominating set may incur large overhead if nodes are

highly mobile.

Position-based routing algorithms [4, 5, 8, 27, 32, 35] have been proposed to limit the

propagation of redundant route-request messages during route discovery. Unlike usual

greedy position-based algorithms, NADV [40] takes both distance and link cost (measured

in terms of delay, power consumption, or other metrics) intoaccount in forwarding data

packets. The main drawback of position-based algorithms isthat it requires every node

know the position of the destination to which it needs a route, which would require addi-

tional location service.

Other algorithms also try to reduce redundant propagation of route request packets [49,

52,53]. Williams et al. [69] classify broadcasting techniques into simple flooding, probability-

based [49] flooding, area-based [49] flooding, and neighbor knowledge-based [52, 53]

flooding. Other algorithms use pruning methods such as self pruning and dominant pruning
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to minimize redundant propagation of packets [52,53].

The basic idea behind many of the position-based routing algorithms [4,5,8,27,32,35]

is to limit the search for the destination to a portion of the network based on estimating the

location of the destination based its last known position and velocity or with the help of a

location service. Extra overhead is incurred when the estimation turns out to be incorrect.

These algorithms require each node in the network to know itsown position and the position

and velocity of every other node at some point in time. This information is not practical to

maintain in a real ad hoc network environment. Moreover, each node in the search range is

required to forward route-request packets, which can result in propagating redundant route-

request messages. Our algorithm addresses both problems. It only requires each node to

know the relative position of nodes in its neighborhood. A node trying to establish a route

to a destination does not need to know the position or velocity of the destination.

3.3 Basic Idea Behind Our Algorithm

Our aim is to reduce the redundant rebroadcasting of route request messages during route

discovery. To achieve this goal, we require:

• Each route request message carry the information about whatnodes have been al-

ready covered by the route request.

• Each node has its two-hop neighbor information.

With the above information, a node is able to make informed decision regarding whether

or not to forward a received route request message. However,these requirements are not

practical considering the message size and the overhead involved in obtaining two-hop

neighbor information. With these considerations, we require:

• Each route request message carry information about which area has already been

covered and
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• Each node has its one-hop neighbor information.

To accomplish this, we split the network area into triangular regions as shown in Figure3.1;

we also present a method for assigning addresses to each of the triangular regions in Sec-

tion 3.4.

3.4 Preliminaries

In this section, we present methods for assigning fixed as well as relative address to triangu-

lar regions. For this, we introduce several terms and data structures used in the algorithm.

They include Absolute Location Identifier (ALI), Relative Location Identifier (RLI), and

bit vectors.

3.4.1 Absolute Location Identifier

We assume that the nodes move in a planar area. We divide the planar area into a number

of equilateral Triangular Areas (TAs) as shown in Figure3.1. We assign each TA a unique

identifier called Absolute Location Identifier (ALI). Two TAs that share a side make up a

rhombus. Without loss of generality, we only take into account the rhombuses whose sides

are shown with solid line segments in Figure3.1. We assign ALIs to TAs in two steps. We

first assign ALIs to rhombuses and then we assign ALIs to TAs based on the ALIs of the

rhombuses.

The ALI of a Rhombus

Given that all rhombuses are of same size and shape, the coordinates of any one of the

vertices of a rhombus uniquely identifies the rhombus. We usethe coordinates of the

left-bottom corner of a rhombus to identify the rhombus. Forinstance, pointo uniquely

identifies the shaded rhombus in Figure3.1. Hereafter, we will identify a rhombus by

the coordinates of its left-bottom vertex. We next describethe coordinate system used for

identifying the vertices of rhombuses.

49



www.manaraa.com

Similar to rectangular Cartesian coordinate system, we choose the left-bottom corner

of one rhombus as origin (pointo in Figure3.1). The X-axis is the horizontal line passing

through the origino and the Y-axis is the slant line (which makes 60 degrees with the X-

axis) passing through the origin. With reference to these two axes, any point in the plane

can be represented by an ordered pair of real numbers (s, h). We divide the network area

into rhombuses so that the coordinates of their vertices areintegers as shown in Figure3.1.

The coordinates (s, h) assigned to the left bottom vertex of a rhombus is called theALI of

the rhombus. Next, we discuss how we assign an ALI to a TA.

The ALI of a TA

A rhombus is split into two TAs by one of its diagonal lines, shown as dotted lines in

Figure3.1. We assign ALIs to each of the two TAs belonging to the rhombuswith ALI

(s, h) as follows. The ALIs of the TAs belonging to the rhombus withALI ( s, h) are of

the form (s, h,flag) whereflag is 0 for the left TA and1 for the right TA. For example,

(−3, 2, 0) and (1,−1, 1) are the ALIs of TAsA andB in Figure3.1respectively.

Transformation from a Coordinate to an ALI

How to find the ALI of the rhombus that contains a given point? Suppose the length of

each side of a TA is the transmission rangeR and the location of a nodeb is (xb, yb). Let

the point (x0, y0) in the plane be the origin point. We show how nodeb computes the ALI

(s, h) of the TA in which it lies. Then, the two equations in Equation 3.1 represent the

horizontal solid line and slant solid line bounding the rhombus containing the point (xb, yb)

in Figure3.1.







y = y0 +
√
3Rh
2

y = y0 +
√
3(x− x0 − Rs)

(3.1)

Then the coordinates of the left bottom vertex of the rhombuscontaining the point

(xb, yb), namely (s, h) are given by Equation3.2.
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h =
⌊

2(yb−y0)√
3R

⌋

s =
⌊

xb−x0

R
− yb−y0√

3R

⌋ (3.2)

Each rhombus is divided into two TAs by the slanted dotted line. We identify them

using a flag defined by Equation3.3. The TA on the left/right has the flag of0/1.

flag = (
√
3(xb − x0) + yb − y0 −

√
3R(h+ s+ 1) > 0) (3.3)

This way, given the coordinates of a node with respect to the origin (x0, y0), any node

in a given TA is able to determine the ALI in which the TA lies asit knows the transmission

rangeR. Therefore, each node is able to compute the coordinates of the ALI of the TA in

which it lies. In the rest of this chapter, we refer the ALI of anode to be the ALI of the TA

in which the node lies.

The Representation of an ALI

To reduce the overhead involved in exchanging information about ALIs, we use 32-bit

integers to represent them. Figure3.2shows how the three fields of an ALI are stored in a

32-bit integer.

15 1131 27 23 19 7 3 01

s h flag

Figure 3.2: Representation of an absolute location identifier (ALI)

One might wonder if this representation of ALIs limits the network area. However,

this is not the case for the following reasons. Suppose the transmission rangeR is 250

meters(m) and the origin is the center of the network. Clearly, there are216 × 215 × 2 TAs

and the area of each TA is
√
3R2

4
. Therefore, this representation is able to cover a network

area of size upto10, 781, 278m× 10, 781, 278m, which is large enough for mobile ad hoc

networks.

51



www.manaraa.com

3.4.2 Relative Location Identifiers

The bandwidth used for exchanging location information with neighbors may be high when

nodes use ALIs to represent their physical locations. Suppose a node has neighbors that lie

in 16 different TAs. It has to use a message with length over16×4 bytes to let its neighbors

know which TAs contain its neighbors. Therefore, we define a new term Relative Location

Identifier (RLI) to identify neighboring TAs. We show how RLIs help in saving network

bandwidth for communication in Section3.4.5.
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Figure 3.3: Assigning RLTs to neighboring TAs

A RLI is a unique nonnegative integer assigned by a TA, sayC in Figure3.3, to another

near TA. In this section, we describe how RLIs are assigned byTA C to other TAs. First of

all, TA C picks the TA that lies in the same rhombus and assigns it a RLI of 0. Then TAC

assigns RLIs to other TAs in two steps:

Step 1 Assign RLIs to rhombuses (the rhombus that contains TAC is excluded). We

first define a new term. The distance between two rhombuses is the max distance

between the lines that are parallel to one of the sides and go through the centers of

the rhombuses respectively. For instance, the distance between rhombus (−1, 3) and

(−2,−2) is 4 times the height of a rhombus.
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Then, TAC puts the rhombuses into a number of groups based on their distance to

the rhombus that contains TAC. Clearly, each group of the rhombuses forms a ring

of rhombuses. Each ring is assigned an integer that is the maxdistance between the

rhombuses on the ring and the rhombus containing TAC, divided by the height of a

rhombus. This way, the rings from the nearest to the furthestare assigned numbers

1, 2, 3, · · · respectively. It is easy to see that theith ring contains8i rhombuses.

Finally, TA C counts rhombuses on theith clockwise ring one by one starting from

the rhombus (sC − i, hC − i) where (sC , hC) is the ALI of the rhombus that contains

the TAC. After finishing counting, TAC assigns RLI4i(i−1)+j to thejth rhombus

on theith ring.

Step 2 Assign RLIs to TAs based on the RLIs of rhombuses. Suppose theRLI of a rhom-

bus isi. Then TAC assigns the left and right TAs in the rhombus with RLI2i − 1

and2i respectively.

Figure3.3shows how TAC assigns RLIs to the neighboring rhombuses and TAs. The

numbers in the larger font size are the RLIs assigned to the rhombuses while the numbers

in the smaller font size are the RLIs assigned to the TAs. Clearly, TA C uniquely assigns

RLIs to TAs using consecutive integers starting from0. We discuss why this is important

in saving network bandwidth for exchanging neighborhood information in Section3.4.5.

3.4.3 Transformation between ALIs and RLIs

RLIs are identifiers assigned by a TA (a node) to its neighboring TAs. According to the

rules for assigning RLIs, different TAs (nodes) may assign different RLIs to the same TAs.

Therefore, a RLI needs its assigner to uniquely identify a TA. RLIs assigned to TAs are

relative to a TA but ALIs are global identifiers of TAs. We giveequations for determining

ALI of a TA from its RLI relative to another TA and vice versa.

We first give the equations for transforming a RLI to an ALI. Suppose a TAB (sb, hb, f lagb)

assigns its neighboring TAD (sd, hd, f lagd) a RLI of rli. The question becomes how to
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representsd, hd andflagd usingsb, hb, flagb andrli. If rli is 0, we have(sd, hd, f lagd) =

(sb, hb, !flagb). Otherwise, more effort is needed to determine the ALIs. As shown in Fig-

ure3.3, a ring (based on its definition given in Section3.4.2) of rhombuses has four (left,

top, right and bottom) wings. Let the left, top, right and bottom wings are the0th, 1st,

2nd and3rd wings respectively, and TAD lie in the kth rhombus on thejth wing of the

ith ring around the rhombus containing TAB. We give an example in Figure3.3 to show

how we usek, j, andi here. Rhombus9/4/20/24 (in the larger font) is the0th/1st/3rd/3rd

rhombus on left/top/right/bottom (0th/1st/2nd/3rd) wing on the2nd/1rd/2nd/2nd ring. As

we showed in Section3.4.2, theith ring is made up of8i rhombuses. Therefore,4i(i−1) <

rli ≤ 4i(i + 1), namely
√
rli+1−1

2
≤ i <

√
rli+1+1

2
sincei ≥ 0. We havei =

⌈√
rli+1−1

2

⌉

sincei is also an integer and
√
rli+1+1

2
−

√
rli+1−1

2
= 1. Clearly, therli in the ith ring

starts with4i(i − 1) + 1 and each wing has2i rhombuses. Therefore, the wing number

j =
⌊

rli−4i(i−1)−1
2i

⌋

. Similarly,k = [rli− 4i(i− 1)− 1]%(2i). Therefore, we have:























i =
⌈√

rli+1−1
2

⌉

j =
⌊

rli−4i(i−1)−1
2i

⌋

k = [rli− 4i(i− 1)− 1]%(2i)

(3.4)

Since the ALI of the center rhombus of the ring is (sb, hb) (obtained from the ALI of

TA B), we have:






























(sd, hd, f lagd) = (sb − i, hb − i+ k, (rli+ 1)%2), if j = 0

(sd, hd, f lagd) = (sb − i+ k, hb + i, (rli+ 1)%2), if j = 1

(sd, hd, f lagd) = (sb + i, hb + i− k, (rli+ 1)%2), if j = 2

(sd, hd, f lagd) = (sb + i− k, hb − i, (rli+ 1)%2), if j = 3

(3.5)

We are able to obtain the ALI of a TA given its RLI and the assigner’s ALI using

Equation3.4 and 3.5. Next, we present how a TA determines RLIs from ALIs. This

question can be described as how to represent the RLIrli assigned by TAB to TA D

in terms of TAD’s ALI ( sd, hd, f lagd) and TAB’s ALI ( sb, hb, f lagb). Again, let TAD

lie in the kth rhombus on thejth wing of the ith ring. Clearly the rhombus number is
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4i(i− 1) + 2ij + k + 1. Then we have:

rli = 8i(i− 1) + 4ij + 2k + flagd + 1 (3.6)

Based on the definition of the ring and the rules for numberingj andk, we have:











































i = max (|sb − sd| , |hb − hd|)

(j, k) =































(0, hd − hb + i) if sb − sd ≥ |hb − hd| andhd − hb 6= i

(1, sd − sb + i) if |sb − sd| ≤ hd − hb andsd − sb 6= i

(2, hb − hd + i) if sd − sb ≥ |hb − hd| andhb − hd 6= i

(3, sb − sd + i) if |sb − sd| ≤ hb − hd andsb − sd 6= i

(3.7)

Thus, any TA is able to compute RLIs of its nearing TAs from their ALIs using Equa-

tion 3.6and3.7.

3.4.4 Notations

Before we further discuss the preliminaries and the algorithm, we outline the notations used

in the description of the algorithm:

• TAi refers to the TA whose ALI isi.

• TAnodea refers to the TA in which nodea lies.

• TAi,j refers to the TA with RLI ofj assigned byTAi.

• TAnodea,j refer toTAi,j where nodea lies inTAi.

• NTAi refers to the set of TAs that share one or more vertices withTAi. AndNTAi,j

refers to the set of TAs that share one or more vertices withTAi,j. For example,

NTAC (let C stand for an ALI) in Figure3.3 containsTAC,0, TAC,2, · · ·, TAC,7,

TAC,11, TAC,13, · · ·, andTAC,16.

• NTAnodea andNTAnodea,j refer toNTAi andNTAi,j respectively where nodea

lies inTAi.
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• Cnodea refers to the set of TAs that contains one or more direct neighbors of node

a. SupposeTAnodea contains nodesa, a1, · · ·, andan, and no others. ThenCTAnodea

refers toCnodea ∪ Cnodea1
∪ · · · ∪ Cnodean . Therefore,Cnodea ⊆ CTAnodea

.

• CTAi
refers toCTAnodea

when nodea lies in TAi. CTAi
is empty if no node lies in

TAi.

• CTAnodea,j
refers toCTAi

wherei is the ALI of TAnodea,j.

3.4.5 Bit Vectors

So far, we have introduced two new terms, ALI and RLI. Like absolute and relative path

in file systems, an ALI uniquely specifies a group of nodes thatlie in the same TA while

a RLI is a label assigned to neighboring TA. In the algorithm,we employ ALIs and RLIs

to exchange information between neighbors. An ALI used is a 32-bit integer while a RLI

could be a very small integer. As we mentioned earlier, we assume that the length of each

side of each TA is same the transmission range of the nodes. Asshown in Figure3.3, a

node inside TAC may reach some nodes lying in the rhombuses in the2nd ring but not

any ones in3rd or beyond. Similarly, one hop neighbors of the node in TAC may reach

some nodes lying in the rhombuses in the3rd ring but not any ones in the4th or beyond.

The greatest rhombus number in the2nd/3rd ring is24/48 and hence the greatest RLI of a

TA in the ring is48/96. Therefore, a node can never have a one-hop (two-hop) neighbor

that lies in a TA whose RLI is greater than48 (96). Therefore, a 6-bit (7-bit) RLI is good

enough to specify which TAs form a node’s one-hop (two-hop) neighbor(s). How does this

serve the algorithm? Before answering this question, we briefly describe bit vectors first.

A bit vector is essentially a vector of boolean values. We often use it to represent a

set since it is optimized for space efficiency. Many set representations require one byte or

more per element while a bit vector needs only one bit per element. A drawback of this

representation is that the bit vector could be huge if there are a large number of possible

elements. Next we explain how bit vector is used in the algorithm.
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Under the algorithm, a node is able to determine whether or not to forward a route

request (RREQ) message and also determine the best time to forward the message based

on approximate information about neighbors such as which TAs contain one or more nodes

that already received or will receive the RREQ message. Eachnode needs to store the set

of TAs locally and update the set whenever a new copy of the same message is received.

When it is time for a nodeb to forward the RREQ message, it takes the union of the stored

set of TAs andCnodeb and piggybacks it with RREQ message. Based on the updated setof

TAs, each node make its own decision regarding when to forward the RREQ message. We

encode the set of TAs using bit vectors to reduce the message overhead.

To overcome the drawback of bit vectors, we need to make the number of candidate

elements as small as possible. ALIs are not good to identify elements since there are too

many possible ALIs. This is why we defined RLIs. Because we aremore interested in

the coverage information about its one-hop neighbors, we employ a 64-bit vector (2 32-

bit words) to transmit the set. As we mentioned earlier, possible RLIs are a sequence of

nonnegative integers. Moreover, a node can not have a one-hop neighbor in a TA whose RLI

is greater than48. Therefore, a 64-bit vector serves well for this purpose. The remaining

16 bits carry part of two-hop neighborhood information. Because of this representation,

the RLI assigning function has to be a one-to-one map from TAsto RLIs.

We limit the size of set transmitted from one node to another to 64. For example, a

node may receive many copies of the same route request message. The union of the sets of

TAs carried by those copies is stored locally. When the node decides to forward a RREQ

message it piggybacks with this locally stored set with the RREQ message.

3.5 The Algorithm

In this section, we present the proposed algorithm. We first outline the drawbacks of some

of the existing topology-based routing algorithms. As we mentioned earlier, routing al-

gorithms, such as AODV [56], DSR [29], and TORA [51], that simply flood RREQ mes-
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sage for route discovery are known to have high routing overhead, especially in dense

networks and hence do not scale well. Many papers have partially addressed these prob-

lems by using various graph models, e.g. unit disk graph [10], relative neighborhood graph

(RNG) [12,58,62], and dominating set [6,70,71]. However, they also introduce new prob-

lems, e.g. they use too much bandwidth in exchanging neighbor information. Typically,

they employ heartbeat messages (a.k.a. hello messages) to exchange neighbor information.

When two-hop neighbor information is needed for these algorithms, the size of heartbeat

messages is large in dense networks. Moreover, if nodes movefast, the neighborhood in-

formation known through heartbeat messages becomes obsolete quickly. Clearly, finding

new routes using obsolete neighborhood information increases algorithm complexity. The

problem of obsolete information is reduced somewhat when only one-hop neighborhood

information is exchanged. Moreover, these algorithms can only suppress a limited number

of redundant messages.

To solve these problems, we propose an algorithm that suppresses redundant route re-

quest messages. The proposed algorithm allows nodes to determine whether and when to

forward a received RREQ message based on its neighborhood information and the infor-

mation piggybacked on the message. Under this algorithm, itis required that a node has

information such as who are its one-hop neighbors, what are their ALIs, and what are the

ALIs of the TAs they can reach. It is not required that a node knows the exact locations of

its two-hop neighbors although it can derive a rough ’two-hop’ neighbor knowledge from

its exchanged one-hop information.

When a node initiates a route request, it sends RREQ message piggybacked with the set

of TAs it can reach. Upon receiving the message, the receiverknows which TAs have been

potentially covered by the RREQ message already; potentially covered means that there is

at least one node in each of the TAs that receives the message.When a node receives mul-

tiple copies of the same RREQ message from different neighbors, the potentially covered

TA set is the union of the sets piggybacked on those messages.Therefore, a nodeb knows
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which TAs in the setCTAnodeb
may not have been covered. We refer to such set of TAs

asNPCTAnodeb
. If NPCTAnodeb

is empty, nodeb does not need to forward the message.

Otherwise, it starts a timer (We present a method for computing the timeout value for the

timer in Section3.5.2). When the timer expires, it recomputes theNPCTAnodeb
. Nodeb

forwards the message only if the recomputedNPCTAnodeb
is not empty. Unnecessary for-

warding of RREQ message is suppressed further by performingother checks. We present

those additional checks in Section3.5.2.

We next discuss heartbeat messages, route discovery, and route maintenance, step by

step. Then we present the performance evaluation results ofthe proposed algorithm in

Section3.6.

3.5.1 Heartbeat Messages

Heartbeat messages are a special type of messages sent by nodes periodically. It is a com-

monly used technique for a node to tell its neighbors its status in mobile ad hoc networks.

Upon receiving a heartbeat message, the receiver knows the ids of the nodes lying within

its transmission range as well as other information piggybacked in the message. In other-

words, heartbeat messages help the receiver get to know which nodes are its direct neigh-

bors. Senders typically piggyback relevant information onthe heartbeat messages such that

the receivers have better knowledge about the senders if necessary. The proposed algorithm

employs this information.

A heartbeat message used in the proposed algorithm has threefields: SrcID, ALI and

PCTA. The first field, SrcID, refers to the address of the sender. The second field, ALI,

contains the ALI of the sender. The third field, PCTA, contains the set of TAs within the

transmission range of the sender that contain at least one node. Lets be the sender of a

heartbeat message. ThenCnodes equals to the field PCTA in the message.

Under the proposed algorithm, each node is required to send out heartbeat messages

periodically, say every2 seconds. A node may piggyback a heartbeat message onto other
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types of messages, such as data messages, route request messages, etc. If a node has not

sent such messages within the predetermined time period, itsends out a new heartbeat

message at the end of the time period.

Upon receiving a heartbeat message, a nodeb updates its neighbor table (NT ) accord-

ingly. NT maintains one entry per neighbor (nbr). Each entry has four fields: NbrID, ALI,

PCTA, andts. NbrID and ALI refer to the neighbor’s address and ALI respectively. PCTA

equals toCnodenbr
. Thets field stores the time at which nodeb received the last heartbeat

message from neighbornbr. The following two cases arise when nodeb receives a heart-

beat message from nodes: If there is no entry in neighbor table corresponding tos, node

b inserts a new entry to NT and updates the time stamp field; Otherwise, nodeb updates

the ALI, PCTA and time stamp in the entry corresponding to node s. Nodeb scans its

neighbor table and removes outdated neighbor entry from itsneighbor table before it sends

out (or piggybacks) a heartbeat message. A neighbor entry isconsidered to be outdated if

its timestamp has not been updated during the last three timeperiods; i.e., a node assumes

that the corresponding neighbor is not within its transmission range. After initial rounds of

exchanging heartbeat messages, each node has the necessaryinformation for running the

proposed algorithm.

We indicated earlier that neighbor location information does not work well in mobile

environment. How does this heartbeat mechanism work in suchenvironment? Note that

this mechanism does not collect exact neighbor location information but the approximate

locations (TAs) a node can reach. Network topology changes as nodes move. A node’s

PCTA remains relatively stable as long as related TAs contain one or more nodes even

though nodes may move in/out those TAs. PCTA contains the information we rely on to

suppress redundant route request messages and find route to the destination. Therefore, the

proposed algorithm works relatively stable in mobile environment. We demonstrate this

when presenting simulation results in Section3.6.
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3.5.2 Route Discovery

Similar to existing topology-based on-demand routing algorithms, the proposed algorithm

uses route request messages for finding a route to the destination in route discovery stage.

Unlike other algorithms, we piggyback a set of TAs onto each route request message. We

refer the set of TAs piggybacked of route request messages asPCTA which contains all

the TAs the route request message has reached, to the knowledge of its sender. Here is a

PCTA example. Suppose nodea initiates a route request message which is then forwarded

by nodesb andc. Noded later receives the message from nodeb andc but not from node

a. Nodea piggybacks the message withCnodea before broadcasting it. Similarly, nodeb

andc piggyback the message withCnodea ∪ Cnodeb andCnodea ∪ Cnodec respectively. Upon

receiving the message from both nodeb and c, noded knows the message has reached

Cnodea ∪ Cnodeb ∪ Cnodec. Therefore, noded will piggyback the message with

PCTA = {Cnodea ∪ Cnodeb ∪ Cnodec ∪ Cnoded}

in case it decides to forwards the message. The PCTA in the messages forwarded by node

b andc areCnodea ∪ Cnodeb andCnodea ∪ Cnodec respectively. Clearly, a nodex is able to

make right decision on whether and when to forward a route request message by comparing

CTAnodex and the PCTA in the route request message. Nodex does not need to forward the

message if all the TAs inCTAnodex
are present in the PCTA piggybacked on the message;

one exception would be when the destination of the route request message resides in the

same TA as nodex does. In this case, at least one node in the TA would need to forward

the message to make sure that the destination receives the message.

In some cases, information contained in the PCTA alone is notsufficient for suppressing

redundant route request messages. For example, suppose node a forwards a route request

message and all its neighbors receive the message at the sametime. Without loss of gen-

erality, let nodeb be one of the neighbors. There is a very good chance that one ormore

TAs inCTAnodeb
are missing from the PCTA piggybacked in the message. The route request
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message still gets forwarded if all of the neighbor nodes do what b does. One solution to

this issue is to let the neighbors forward the message at different times. This solution has

a couple of advantages. For example, it reduces contention for media access and avoids

unnecessary packet loss due to the collision. It also gives time to the neighbor nodes to

learn about the route request message and hence make right decision to reduce redundant

route request message propagation.

We now present how a nodeb responds to a received a route request message with

PCTA piggybacked. It first checks if the following conditions hold:

1. Nodeb forwarded the same route request message earlier.

2. All the TAs inCTAnodeb
have been covered already, namelyCTAnodeb

is a subset of

the union of PCTAs piggybacked on the same route request messages received from

other nodes by nodeb.

3. All the TAs inCnodeb have been covered already and a node in the setTAnodeb for-

warded the message earlier.

4. The destination of the route request message resides inTAnodeb and a node inside the

TA forwarded the message earlier.

5. Nodeb already saw a route reply message for this route request message.

If any of the above conditions holds, nodeb simply ignores the received message since

forwarding the message would not help any new node to receivethe message. Otherwise,

it computes the priorities of its direct neighbors including itself for forwarding the message

based on information in its neighbor table,CTAnodeb
and virtual PCTA (VPCTA). A virtual

PCTA is the union ofCnodeb and PCTAs piggybacked on the same seen route request mes-

sages. The priority calculated is proportional to the size of the setCTAnodeb
− V PCTA.

The timeout value for a node to forward a route request message is inversely proportional
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to this calculated priority. The higher the priority a node has, the faster the node will for-

ward a received route request message. After setting the timeout value, nodeb waits for

the timeout period. If nodeb receives another copy of the same route request message,

before the timeout expires, it will re-evaluate the conditions and re-calculate the priority

and timeout value if necessary. If nodeb still needs to forward the route request message,

nodeb adjusts the timeout value according to newly calculated timeout value.

Clearly, the size of PCTA piggybacked on route request messages directly plays a role in

how efficient the algorithm is in suppressing redundant route request messages. However,

we cannot let the size of PCTA piggybacked grow indefinitely.Since a nodeb only uses sets

no larger thanCTAnodeb
in calculating the criteria for forwarding a received routerequest

message, it’s clear that the TA information inside the PCTA of the message is useless when

the TA is two or more hops away from the receiving nodeb. Therefore, we can limit the

size of the bit vector to 96 bits which is good enough to cover all the TAs containing all

two-hop neighbors of the node.

In route discovery phase, a node initiates a route request message and the destination

upon receiving the route request message, sends a reply message. Upon receiving a route

request message, the intermediate nodes record them in a route request table (RRT). The

intermediate nodes also record route reply messages in a route table (RT) when they receive

a route reply message. Detailed descriptions of the data structures used are as follows.

1. Each route request message has six fields. They are Seq, SrcID, DstID, hopcount,

PCTA, and ALI respectively. The Seq field is the sequence number of the route

request message assigned by the source node whose address isrecorded in the SrcID

field. The source node maintains a sequence number and increments it every time

it initiates a new route request. Therefore, the Seq field together with SrcID field

uniquely identifies a route request message. The DstID field specifies the address of

the destination node. The hopcount field contains the numbers of nodes the route

request message has traversed from the source so far. The PCTA and ALI fields
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together uniquely defines the set of TAs the route request message has reached.

2. Each node maintains a route request table (RRT) which stores information about re-

ceived route request messages. Each entry in this table contains the first 5 fields

of the received route request messages. Note that ALI is not relevant anymore after

converting the RLIs in the PCTA to ALIs or the RLIs relative toits own ALI. In addi-

tion to these five fields, each entry has three other fields. They are prehop, sameTA,

forwarded, andts. The field prehop indicates the node from which the route re-

quest message has been received. This field is updated whenever a better route to

the source is detected (i.e., when a route request message with lower hopcount is

received). Typically, it contains the node from which it receives the first copy of

the route request message. We may also take the hopcount fieldinto account when

updating this field. The field sameTA indicates whether a nodeinside the same TA

has forwarded the route request message. The field “forwarded” indicates whether

a node has forwarded the same route request message earlier.The fieldts records

the time at which the route request message has been received. It is updated when it

receives the same route request again. Each entry has limited lifetime. We remove

an entry in case it expires.

3. Each route reply message is composed of four fields. They are Seq, SrcID, DstID,

and hopcount. The first three fields are copied from the corresponding route request

message. The forth field hopcount indicates how many nodes the route reply message

has traversed from the destination.

4. Each node maintains a route table (RT) which stores the routing entries describing

how to get to another node in the network. Each route entry hasthree fields, namely

DstID, nexthop, andts. The fieldts indicates the time at which the route entry was

created or updated. The nexthop field contains the id of the node to which it needs to

forward data packets destined to the node with id DstID.
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Figure3.4shows the pseudo code for disseminating route request messages.

When nodeb initiates a RREQ for destination d
Init rreq = (Seq = ++ Seq,SrcID = b,DstID = d,

hopcount = 1, PCTA = Cnodeb
, ALI = ALIb);

Storerreq in RRT and broadcastrreq;

When b receives a RREQm
if b has forwarded a copy ofm alreadythen return ;
if b has not received a copy ofm beforethen

Storem in RRT ;
Get the entryrrt from RRT corresponding tom; /* Operations onrrt are done inRRT as well */
rrt.PCTA = rrt.PCTA ∪m.PCTA ∪ {TAnodeb

};
rrt.SameTA = rrt.SameTA||(ALIb == m.ALI);
if |CTAnode

b

− rrt.PCTA| == 0 then return ;

if (rrt.sameTA)&&(|Cnodeb
− rrt.PCTA| == 0) then return ;

priority = getPriority (rrt.PCTA, b);
toV al = priority ×BroadcastSpacing; /* BroadcastSpacing is a predefined value */
if rrt.SameTA then toV al+ = SameTAWait; /* SameTAWait is a predefined value */
Set a timerT with a timeout value oftoV al;

When timer T at b expires
Get the entryrrt from RRT corresponding toT ;
if rrt.forwarded then return ;
if |CTAnode

b

− rrt.PCTA| == 0 then return ;

if rrt.sameTA and |Cnodeb
− rrt.PCTA| == 0 then return ;

Reconstruct the messagem with ALI andPCTA updated torrt.PCTA ∪ Cnodeb
;

Broadcastm with a broadcast jitter;

function: getPriority (PCTA, b)

C = CTAnode
b

− PCTA;

priority = 0;

nset = the set of neighbors that lie inPCTA;

while (|C| > 0)

Find a noden in nset such that|C − Cnoden | is the smallest;

if n is b then return priority; changed d to n

C = C − Cnoden ; priority = priority + 1; nset = nset− n;

return lowest priority; /* lowest priority is a predefined value */

Figure 3.4: Algorithm for disseminating route request messages

Once the destination node receives the route request message, it sends a route reply

message back to the source node via the node in the prehop fieldcorresponding to this route

request message, found in its RRT. In this case, it also updates its route table accordingly

for the source node. When an intermediate node receives a route reply message, it simply

forwards the message to the prehop corresponding to the route request message entry in

RRT and updates its RT. After the route reply message reachesthe source node, a route has

been established to the destination and the source node may start forwarding data packets
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to the destination.

3.5.3 Route Maintenance

Nodes in mobile ad hoc networks may move at will. An established route will break when

an intermediate node on the route moves away. Therefore, source needs to establish a new

route in such scenario if the route is still being used. Many existing routing algorithms,

such as AODV and DSR, use route-error messages to notify source nodes about broken

links. The source nodes then re-initiate route discovery toestablish a new route to the

destination. In triangle based routing, each node may maintain multiple next hops for a

given destination, helping it repair a broken link by using other valid next hops. We take

this approach for repairing broken links.

The basic idea behind route repair is as follows: When a nodeb detects a broken link

on a route to the destination, if it can not find another available link through which it can

forward data to the destination, it first sends a route repairmessage to its one-hop neighbors.

Upon receiving the route repair message, each node updates its own route table by removing

appropriate links, and checks if it has a good forwarding node to the destination. If so, it

acknowledges the route repair message. Otherwise, nothingneeds to be done. The broken

route is repaired when nodeb receives one or more acknowledgments for the route repair

message. Otherwise, it initiates a route discovery on behalf of the source node.

3.5.4 Correctness Proof

In this section, we present a correctness proof of the algorithm in a connected network.

Before presenting the correctness proof of the algorithm, we prove the following theorems.

Theorem 3.1 The algorithm for route discovery terminates in finite time assuming message

delay is bounded and the given network has finite number of nodes.

Proof: Each node sets up a timer upon receiving a route request message. It forwards

the message only after the timer expires and it has never forwarded the message before.
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Since the timeout value is always finite, each node forwards or stops forwarding a received

route request message at most once in a finite time. Nodes in the network will stop for-

warding any given route request message in finite time since the number of nodes in the

network is finite. Therefore, the algorithm terminates in finite time.2

Theorem 3.2 Assuming the network is connected, for any TA having one or more nodes,

there is at least one node inside the TA that receives the route request message initiated by

any node.

Proof: Without loss of generality, let nodes initiates a route request messagem. Thus,

we rephrase the theorem as follows: The messagem is received by at least one node in

eachTA. We prove the theorem by induction onTAs.

Base:Want to prove there is at least one node in eachTA that receives the messagem.

It is clear that nodes in TAnodes that receives the messagem. Note that we assume that a

node will receive a message sent by itself.

Induction: Assume that there is at least one node that lies inTAi and receives the

messagem. Want to show that it is also true for eachTA in CTAi
. According to the

algorithm, a node inTAi does not forward the message only when all TAs inCTAi
have

been covered already (Case 1), or it has forwarded the message before (Case 2). If it is

the Case 1, the proof is done. In Case 2, all nodes inTAi receive the messagem. In this

case, a node, sayx, is able to reachTAy which does not belong toCnodei. According to the

proposed algorithm, nodex forwards the messagem whenTAy is not covered by a route

request message. Therefore, all TAs inCTAi
are covered.2

Theorem3.1 proves that the proposed algorithm will terminate in finite time, while

theorem3.2 proves that at least one node in each TA receives the route request message

initiated by a source node. Clearly, both theorems togetherprove that any route request

message initiated in a connected network will reach a nodex inside the TA in which the

destination lies. According to the proposed algorithm, node x or some other node in the
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same TA forwards the message to the destination. In either case, the destination receives

the route request message.

3.6 Performance Evaluation

In this section, we present the results of our performance evaluation of TBR compared

to AODV [56]. We first introduce the simulation model and then present our simulation

results and analysis of those results.

3.6.1 Simulation Model

We used GloMoSim [74], a widely used network-simulation tool for studying the perfor-

mance of routing algorithms for mobile ad hoc networks, for evaluating the performance

of TBR.

We chose IEEE 802.11 [26] and IP as the MAC (Medium-Access Control) and network-

layer algorithms respectively. All nodes have a fixed transmission range of 350m. We used

the implementation of AODV that comes with the GloMoSim 2.0.3 package to compare its

performance with TBR. This implementation employs expanding-ring search to discover

a route from a source to a destination; under expanding ring search, the search neighbor-

hood is enlarged by increasing the TTL (TimeToLive) field in the IP header of the request

packets. AODV starts the search for a route to the destination by setting TTL to 1 or to the

previously known hopcount and repeats the search by increasing the TTL by 2 (after the

TTL reaches 7, it is set to 35, the maximum network diameter) until a RREP message is

received from the destination or the timeout for route discovery expires. This phased search

reduces the route-establishment overhead for destinations that are close to the source. We

simulated TBR also with this mechanism to reduce the propagation of route request mes-

sages.

In the implementation of AODV, we set the route-discovery timeout to 10 seconds.

The source checks if a route reply message is received within80 times TTL milliseconds
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after the last time it initiated a route request. In our implementation of TBR, each node

broadcasts a heartbeat message every 2 seconds. Like AODV, the timeout for checking

route replies for TBR is set to 80 times TTL milliseconds. A node re-initiates a new route

request if it receives no reply before it times out.

3.6.2 Mobility Model

We adopt the steady state random-waypoint model [9,18,73] that is a widely used mobility

model for simulations. Under this model, each node travels from a random location to a

random destination at a random speed, the speed being uniformly distributed in a predefined

range. After a node reaches its destination, it pauses for a predetermined amount of time

and then moves to a new randomly chosen destination at a randomly-chosen speed.

In our simulation, we set the speed range to 1 – 19 m/s. In orderto study how mobility

affects the performance of the routing algorithms, we selected pause times of 0, 30, 60, 90,

120, 200, 300, 500, and 900 seconds. When the pause time is 0 seconds, every node moves

continuously. As the pause time increases, the network approaches the characteristics of a

fixed network.

In a dense network, a path may always be available between anysource-destination

pair. On the contrary, if nodes are sparsely distributed, the network may be partitioned;

moreover, in this case, node mobility can exacerbate the situation. In our performance

evaluation, we simulated the following three scenarios to study the effect of density of the

nodes on performance:

• 1500× 1500m2 field with 200 nodes

• 1500× 1500m2 field with 300 nodes

• 1500× 1500m2 field with 400 nodes

We ran the simulation for each of the three scenarios for 15 simulated minutes.
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3.6.3 Traffic Model

To measure the effect of network traffic, we used 5, 10, 20 30, 40, or 50 CBR (constant

bit-rate) data sources. We selected both the sources and thedestinations randomly and

uniformly. The sources transmit data between a chosen starttime and a corresponding end

time; we selected the start and corresponding end times randomly and uniformly within

the 15-minute simulated interval in such a way that the starttime precedes the end time.

We fixed the size of data packets at 512 bytes and had each source generate packets at the

rate of 4 packets per second. Measurements were taken after asettling time [73] of 150

simulated seconds.

3.6.4 Performance Metrics

We evaluated the performance of our algorithm with respect to the following three metrics:

• Packet-delivery ratio: The ratio of the number of data packets delivered to the desti-

nations to the number of data packets generated by the CBR sources.

• End-to-end delay of data packets: This figure includes all possible delays, includ-

ing those caused by buffering due to route discovery, queuing delay at the interface

queue, retransmission delays at the MAC layer, and propagation and transfer time.

• Normalized routing overhead: The ratio of the number of routing control packets

transmitted to the number of data packets delivered to the destinations. We count

each time a node sends a routing control packet to its next-hop neighbor.

Next, we present the performance evaluation results of our algorithm.

3.6.5 Performance Results

We evaluated the performance of our algorithm with respect to the above-mentioned met-

rics under three scenarios.
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Scenario I

Under this scenario, we used a total of 200 nodes randomly distributed across the simulated

region.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5  10  15  20  25  30  35  40  45  50

N
or

m
al

iz
ed

 c
on

tr
ol

 o
ve

rh
ea

d

Number of data srcs

Normalized control overhead

AODV
TBR

(a)

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 5  10  15  20  25  30  35  40  45  50

P
ac

ke
t d

el
iv

er
y 

ra
tio

Number of data srcs

Average packet delivery ratio

AODV
TBR

(b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 5  10  15  20  25  30  35  40  45  50

E
nd

-t
o-

en
d 

de
la

y 
(s

)

Number of data srcs

Average end-to-end delay

AODV
TBR

(c)

Figure 3.5: Varying number of data sources in scenario I (200nodes)

Figure3.5 and3.6 show the performance of TBR compared to AODV with respect to

the three metrics for varying numbers of data sources and pause times. In Figure3.5, the

values plotted are the average values taken over various pause times ranging from 0 to 900

seconds for different number of data sources. Figure3.6 the values plotted are for various
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Figure 3.6: Varying the pause time in scenario I (200 nodes)

pause times, averaged over 5 to 50 CBR sources.

Under scenario I, the simulation results show that the average normalized routing over-

head of AODV and TBR is 2.23 and 1.20 respectively. As expected, TBR uses fewer nodes

for forwarding route requests than AODV, resulting in lowerrouting overhead. TBR has

slightly higher average end-to-end delay, on average; however end-to-end delay of AODV

increases sharply as the number of CBR sources increases beyond 40. In summary, perfor-

mance of TBR is more stable than AODV when nodes with high mobility are involved or
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the number of CBR sources are high. The results obtained in scenario II and III (described

next) also confirm this observation.

Scenario II

This scenario has 300 nodes.
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Figure 3.7: Varying number of data sources in scenario II (300 nodes)

Figures3.7 and3.8 show the performance of TBR compared to AODV with respect

to the three metrics for varying numbers of data sources and pause times. In this scenario,

TBR performs better than AODV with respect to all three metrics. For instance, the average
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Figure 3.8: Varying the pause time in scenario II (300 nodes)

values of the normalized routing overhead, packet-delivery ratio, and end-to-end delay of

TBR are 1.67, 0.959, and 0.099 respectively, while the threemeasurements for AODV are

4.57, 0.963, and 0.055 respectively. In this scenario, AODVhas slightly lower end-to-end

delay when fewer CBR sources are involved. However, it has higher end-to-end delay when

there are 50 CBR sources, which makes its average value higher than that of TBR. Again,

as results in Figure3.8 indicate, the performance of TBR is much more stable than AODV

with respect to node mobility.
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Scenario III

This scenario has 400 nodes.
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Figure 3.9: Varying number of data sources in scenario III (400 nodes)

Figures3.9 and3.10show the performance of TBR compared to AODV with respect

to the three metrics for varying numbers of data sources and pause times. The simulation

results under this scenario are similar to the simulation results under scenario II. TBR

has much lower routing control packet overhead than AODV in this case. TBR has higher

packet-delivery ratio, and lower end-to-end delay than AODV in this case when the number
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Figure 3.10: Varying the pause time in scenario III (400 nodes)

of data sources reaches 40. Even in such a dense network, the average normalized routing

overhead of TBR is 2.51, which is only 1.31 more than that in scenario I and 0.84 more

than that in scenario II. This case also demonstrates that TBR is much more stable than

AODV.

3.6.6 Analysis

We make the following observations based on the simulation results.
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Routing Overhead

In sparse networks, the two algorithms have similar packet-delivery ratio. Since TBR tries

to guarantee the delivery of generated data packets, it issues many useless RREQ messages

searching for non-existent paths in a partitioned network.However, as the network becomes

denser, the number of route-control packets issued by TBR does not greatly increase. This

gentle rise is due to TBR’s selective forwarding mechanism in flooding RREQ messages.

This mechanism is very efficient in controlling routing overhead by limiting the number of

nodes that forward the RREQ messages in dense networks.

The average normalized routing overhead under all three scenarios for AODV and TBR

are 6.81 and 1.79 respectively. TBR has relatively constantoverhead as the number of

nodes in the network increases from 200 to 400. On the contrary, AODV incurs much more

routing overhead as the number of nodes increases. The same thing happens as the number

of CBR sources increases or the nodes become more mobile (or pause time decreases).

Thus, TBR performs much better than AODV with respect to routing overhead in networks

with highly mobile nodes, networks in which nodes are densely distributed, or heavily

loaded networks.

End-to-end Delay

The overall average end-to-end delay for AODV and TBR are 0.072 and 0.10 respectively.

TBR has highest end-to-end delay in a sparse network. This result arises because it is hard

to repair a broken route in a sparse network. As the density ofthe network increases, more

routes become available, and the end-to-end delay is more dependent on the number of hops

and the network load. There the end-to-end delay under TBR iscomparable to AODV. In

high-density and high-load networks, TBR has lower end-to-end delay than AODV because

TBR has much lower routing overhead. Another reason TBR has higher end-to-end delay

is that nodes need to wait certain amount of time before forwarding a route request message

in order to suppress more redundant messages.
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Network Load

As we expect, as network load increases, both algorithms show increasing normalized rout-

ing overhead and end-to-end delay. However, TBR is relatively stable as the number of data

sources increases, but performance of AODV degrades greatly.

3.7 Conclusion

This chapter proposes a novel mechanism for suppressing redundant route request mes-

sages when broadcasting them in mobile ad hoc networks. It presents the triangle based

routing algorithm that employs that mechanism. In a dense network, we have demonstrated

that the algorithm efficiently selects a limited, but sufficient, set of forwarding nodes to

flood the route requests. We compared the performance of our algorithm with a well known

routing algorithm AODV. Simulation results show that TBR always has much lower nor-

malized routing overhead than AODV.

Copyright c© Qiangfeng Jiang 2013
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Chapter 4

A Routing Algorithm with Selective
Forwarding for MANETs

4.1 Introduction

A Mobile Ad Hoc Network (MANET) consists of a set of mobile hosts that can form a

network automatically without the aid of any infrastructure or human intervention. This

feature of ad hoc networks facilitates its deployment in a variety of environments such as

battlefields, disaster areas, and natural habitats. The limited battery life of mobile hosts

implies a need for energy-efficient routing algorithms on such networks.

Depending on when the sender of a message gains a route to the receiver, routing

algorithms for mobile ad hoc networks can be classified into three categories: proac-

tive [15,50,54], reactive [29,55,56], and hybrid [24]. Proactive routing algorithms compute

all routes before they are needed. Reactive algorithms compute routes on demand. Hybrid

algorithms use a combination of proactive and reactive approaches. A reactive routing al-

gorithm consists of a route-discovery phase and a route-maintenance phase. Many of the

existing reactive routing algorithms flood the network withredundant route-request mes-

sages in order to find a route to the destination. In this chapter, we propose a reactive

routing algorithm under which a node can select its neighbors to forward route requests,

lowering the routing overhead. Moreover, our routing algorithm can help in maintaining

multiple routes to a destination.
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4.1.1 Related Work

Routing in MANETs has been extensively studied in the literature [9, 15, 18, 23, 29, 51,

54–56,67]. Many of the existing on-demand routing algorithms for MANETs use a simple

broadcasting mechanism that floods the entire network with route-request messages. This

mechanism can lead to a high redundancy of route-request messages, contention, and col-

lision. Well known algorithms such as AODV [56], DSR [29], DSDV [54] and TORA [51]

use the flooding approach. Broch et al. [9] studied the performance of DSDV, TORA,

DSR, and AODV. Their results show that the routing overhead of these algorithms increases

quickly as the number of of nodes in the network increases. Perkins et al. [55] proposed

Dynamic MANET On-demand (DYMO) routing algorithm, a descendant of AODV and

DSR. DYMO is suitable for sparse networks. TBRPF [50] and OLSR [15] are two proac-

tive, link-state routing algorithms. Both of them are suitable for networks in which a large

number of routes are needed and for applications that can nottolerate the delay due to

route discovery. TBRPF reports updates reactively when a link state changes while OLSR

reports them periodically. Therefore, TBRPF and OLSR may not work well in networks

where nodes move quickly. In such a scenario, TBRPF may send alarge number of updates

into the network and nodes may have too many outdated links inits route table if OLSR is

used.

The Zone Routing Algorithm (ZRP) [23] uses a hybrid approach for maintaining routes.

Under this algorithm, each host proactively updates its routing table for all destinations

within its zone. For destinations outside its zone, a node employs a reactive approach to

find routes on demand. Some routing algorithms use a connected dominating set [67] as a

backbone network to minimize the number of nodes that participate in forwarding route-

request packets, and hence reduce overlapping route-request propagation. A disadvantage

of this approach is that the selected “core” or “backbone” nodes may drain their battery

quickly; a solution to overcome this problem is to periodically change the set of “backbone”

nodes. However, the complexity of computing an approximateminimal dominating set of a
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wireless network (computing a truly minimal dominating setis known to be NP-complete)

may result in high overhead.

Researchers have proposed position-based routing algorithms to limit the propagation

of redundant route-request messages during route discovery [4,5,8,27,32,35]. DREAM [4]

proactively maintains at each node the location information of all the nodes in the net-

work and floods data packets to nodes in the direction of the destination. Location-Aided-

Routing (LAR) [35] floods route-request packets only in a request zone, which it calculates

based on the last known position and velocity of the destination. The quality of unicast

routes obtained by LAR is improved in [16]. GPSR [32], GFG [8], and GRA [27] use sim-

ilar greedy methods for forwarding data packets. Under these algorithms, upon receiving

a data packet, each node forwards it to a neighbor that is closer to the destination. This

process is repeated until the data packet reaches the destination. However, they use dif-

ferent mechanisms to route data packets when the greedy method fails. GPSR and GFG

use perimeter-mode packet forwarding, while GRA uses breadth-first or depth-first route

discovery to handle such failures. The path found by perimeter-mode packet forwarding

may not be optimal if the source and destination do not lie on apath that closely follows

a straight line. Breadth-first or depth-first route discovery may result in very high routing

overhead for large ad hoc networks. Xing et al. [72] propose Bounded Voronoi Greedy

Forwarding (BVGF). Mauve et al. [46] present a good survey of many routing algorithms

such as DREAM, LAR, and GPSR. Terminode routing [5] combines location-based rout-

ing and link-state routing and uses anchors to optimize the quality of routes. CLR [25]

partitions the network into interlaced gray and white districts according to location; only

nodes in gray districts participate in re-transmitting control packets. Unlike usual greedy

position-based algorithms, NADV [40] takes both distance and link cost (measured in terms

of delay, power consumption, or other metrics) into accountin forwarding data packets.

Other algorithms also try to reduce redundant propagation of route request packets [49,

52,53]. Williams et al. [69] classify broadcasting techniques into simple flooding, probability-
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based [49] flooding, area-based [49] flooding, and neighbor knowledge-based [52, 53]

flooding. Other algorithms use pruning methods such as self pruning and dominant pruning

to minimize redundant propagation of packets [52,53].

The basic idea behind many of these position-based routing algorithms is to limit the

search for the destination to a portion of the network based on estimating the location of

the destination based on its last known position and velocity. Extra overhead is incurred

when the estimation turns out to be incorrect. These algorithms require each node in the

network know its own position and the position and velocity of every other node at some

point in time. This information is not practical to maintainin a real ad hoc network en-

vironment. Moreover, each node in the search range is required to forward route-request

packets, which can result in propagating redundant route-request messages. Our algorithm

addresses both problems. It only requires each node to know the relative position of nodes

in its neighborhood. A node trying to establish a route to a destination does not need to

know the position or velocity of the destination.

4.1.2 Assumptions

We make the following assumptions about the nodes in the network.

• Nodes communicate via omni-directional antennas. The transmission rangeR is the

same for all nodes in the network. Nodes within rangeR of n are called neighbors

of n; Any message sent byn is received by all its neighbors.

• Nodes can determine the direction and distance of their neighbors. Nodes can de-

termine their location by GPS and include it in the hello algorithm, or they can esti-

mate the location of their neighbors by a combination of smart antennas and signal-

strength measurements [68].

• Nodes are mobile.
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4.1.3 Chapter Objectives

None of the many existing position-based routing algorithms for routing in ad hoc net-

works, to our knowledge, uses the relative position of neighbors to reduce route-discovery

overhead. Furthermore, many of the existing reactive routing algorithms use simple flood-

ing for sending route requests, which may result in redundant messages, contention, and

collision. To address these faults, we proposeRPSF (Routing Protocol with Selective

Forwarding), a novel algorithm for route discovery in mobilead hoc networks. RPSF tries

to minimize the propagation of redundant route requests by limiting the number of nodes

that forward any route-request message. Performance evaluation shows that RPSF has sig-

nificant advantages over AODV.

4.1.4 Organization of the Chapter

The remainder of this chapter is organized as follows. The basic idea behind route-request

propagation under RPSF in an ideal network is presented in Section 4.2. In Section4.3,

we extend this algorithm to a general network and present RPSF, a general route-discovery

algorithm. In Section4.4, we evaluate the performance of RPSF and compare its perfor-

mance with AODV [56]. In Section4.5, we discuss the merits and shortcomings of our

routing algorithm. Finally, Section4.6concludes this chapter.

4.2 Route-Request Propagation under RPSF in the Ideal
Case

In many of the existing reactive routing algorithms for ad hoc networks, when a source

node wants to find a route to a destination, it broadcasts a route-request (RREQ) message

to all its neighbors; every node that receives the route-request message rebroadcasts the

request to all its neighbors. This method results in overlapping broadcasts and incurs a

lot of network overhead. In order to minimize such overlapped broadcasts, RPSF chooses

only a subset of the nodes in its neighborhood to forward the RREQ message. However,
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Figure 4.1: Route-Request Propagation in the Ideal Case

it ensures that the RREQ message eventually reaches the destination unless the network is

partitioned. In the ideal situation, under RPSF, a source node only needs to select three

of its neighbors to forward its RREQ message. Each node forwarding the RREQ message

needs to select only two nodes in its neighborhood to relay the RREQ and this continues

until the RREQ reaches the destination.

The ideal caseoccurs when the source node is able to select three nodes thatare at

distanceR and are120◦ apart with respect to the source to forward the RREQ message.

Moreover, every forwarding node (unless it lies at the edge of the network) receiving the

route request from a noden is able to select two nodes that are at distanceR and are

120◦ apart with respect ton. Figure4.1 illustrates this ideal situation in which the source

S initiates route discovery by sending a route request. Solidcircles represent the nodes

forwarding the RREQ message; arrows point from nodes broadcasting the RREQ message

to nodes selected to forward the RREQ message. NodeS initiates the route-discovery

process by sending a RREQ message.S selectsA1, A2 andA3 as its forwarding nodes.

A2, for example, selectsB2 andB3 as forwarding nodes.D4 receives the route request

from bothC3 andC4 in some order. Depending on this order,D4 selects either{C4, E5}
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or {C3, E5} as its set of forwarding nodes. The same node can be selected as a forwarding

node by more than one node. However, a node forwards the message only once even if it

has been selected as a forwarding node by more than one node. From Figure4.1 and the

properties of regular hexagons, it is clear that the route request sent by a source eventually

reaches the destination in the ideal case if the network is not partitioned. To be precise, in

the ideal case, the entire geographical region can be partitioned into hexagons as shown in

Figure4.1 with the source lying at the vertex of one of these hexagons. As a result of the

source broadcasting the route request each node on the vertex of each of these hexagons

will rebroadcast the message. Each node inside a hexagon is at a distance less than or

equal toR from one of the vertices of the hexagon, whereR is the length of each side of

the hexagons which is also the transmission range of each node. Thus, every node in the

system is within the transmission range of at least one node broadcasting the route request

and hence will receive the route request.

4.3 Route Discovery in the General Case

The ideal situation of Section4.2may not be present in a general ad hoc network, especially

if the nodes are sparsely distributed. Based on the intuition gained from the algorithm in

the ideal case, we now present an algorithm that is suitable for general ad hoc networks.

4.3.1 Selecting Forwarding Nodes for Route-Request Propagation

The key difference between route-request propagation in the ideal case and the general case

lies in how a node selects its forwarding nodes. We first present the criteria used by a node

for selecting its forwarding nodes. We then present the route-discovery algorithm in the

general case and prove its correctness.

Definition 4.1 A node AcoversB if B lies within the transmission rangeR of A.

Definition 4.2 In an ad hoc network, a noded is reachablefrom nodes if either (i) d is
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within the transmission rangeR of s or (ii) there exists a sequence of nodesx1, x2, ..., xn

such thatxi is within distanceR fromxi−1 for 1 < i ≤ n ands andd are within distance

R fromx1 andxn respectively. In other words, there exists a paths, x1, x2, ..., xn, d froms

to d in the network.

In the general case, a noden uses the following steps to determine the list of forwarding

nodes: It selects as distant a node as possible within its transmission range. It then selects

further nodes that are mutually as far apart as possible, as far away as possible fromn, and

subject to the constraint that the angle made by any two successive nodes andn is at most

120◦. This last constraint is relaxed if no node can be found that satisfies it.

This method to select forwarding nodes may fail to cover the entire network in the

general case. We now discuss some special scenarios that a node needs to take into consid-

eration while selecting forwarding nodes and also propose rules for handling such special

scenarios.

A B
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x

y

E

F

A B

C
D

yF

x
G

(a) (b)

Figure 4.2: Selection of forwarding nodes in the general case

Scenario (i): The ad hoc network consists of six nodes,A,B,C,D, x andy, as shown in

Figure4.2(a). The distance betweeny andx is ≤ R; the distance betweeny and every

other node is> R. B andD are at distanceR from A and 6 DAB ≤ 120◦. F is a point on

the bisector of6 ABC. E is a point at distanceR from C, and 6 BCE = 120◦. E andF

do not represent any node in the ad hoc network; they are just points of reference. Suppose

A is the source node that initiates the route discovery.A selectsB andD as forwarding

nodes and sends them an RREQ message.B selectsC as its only forwarding node and
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forwards the RREQ message. All nodes in the network receive the route request excepty.

This failure would not happen ifB also choosesx as a forwarding node, becausex covers

y. This observation leads to the following additional rule for the selection of forwarding

nodes.

Rule 1: When a nodeB receives a route request from a nodeA, it chooses a forwarding

neighborC such that (i)C is as far as possible fromB and (ii) 6 ABC is as large as

possible but≤ 120◦ (if there is no such node,6 ABC could be> 120◦). After choosingC,

B may find one or more neighbors in the sector6 ABF (whereF is a point on the bisector

of 6 ABC), and the shortest of the distances between the neighbors insector6 ABF and

neighbors in sector6 FBC (includingC) may be greater thanR. If so,B replaces its choice

of C with the neighborx in 6 ABF that is closest to the line segmentBF ; it resolves ties by

picking the neighbor farthest fromB. After choosingx as a forwarding node,B continues

selecting other forwarding nodes, which may includeC.

The intuition behind this rule for selecting forwarding nodes is that there could be nodes

such asy in Figure4.2(a) (that are exterior to the two circles with centerA andB) that are

not covered byA, B, C orD but can be covered by some node within the range ofB lying

inside the sector6 ABC. B needs to choose the farthest such node as a forwarding node to

cover nodes such asy.

Scenario (ii): The ad hoc network consists of six nodes:A,B,C,D, x and y shown

in Figure 4.2(b). In this figure, the distance betweeny andx is ≤ R; the distance be-

tweeny and every node other thanx is > R. B andD are at distanceR from A. F is

a point in the plane such that6 FAB = 90◦. G is a point such that6 GBA = 6 GAB =

arctan(
2R−

√
4R2−|AB|2
|AB| ) ≤ arctan(2 −

√
3). F andG do not represent any nodes in the

network; they are just points of reference. SupposeA is the source node that initiates the

route discovery.A selectsB andD as forwarding nodes and sends them the RREQ mes-

sage.B selectsC as its only forwarding node and forwards the RREQ message. All the

nodes in the network receive the route request excepty. This failure would not happen if
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A orB also choosesx as a forwarding node, becausex coversy. This observation leads to

the following additional rule for selecting forwarding nodes.

Rule 2: After a nodeA chooses two nodesB andD as forwarding nodes, if there is a

nodex that lies in the triangular region△GAB whereG is some point in the sector6 DAB

such that6 GBA = 6 GAB = arctan(
2R−

√
4R2−|AB|2
|AB| ) ≤ arctan(2 −

√
3), A replaces

its choice ofB with thatx that is close to the line segmentAB (and secondarily close to

nodeA) and then continues the selection of forwarding nodes. A simple calculation shows

that if y is reachable fromx, thenx should lie in the triangular region△GAB such that

6 GAB = 6 GBA = arctan(
2R−

√
4R2−|AB|2
|AB| ).

The intuition behind this node-selection rule is to cover nodes such asy in Figure4.2(b)

(lying between the common tangent lines to the circles with centers atA andB and exterior

to these two circles), which may be within the transmission range of some node close to

the lineAB in the sector6 DAB, in △GAB, but are not within the transmission range of

A orB.

An Optimization for RREQ forwarding: Because of the delay in RREQ message

propagation in various directions, it is possible that a node n is selected as a forwarding

node by one of its neighbors even after all the neighbors ofn have received the RREQ

message. In such a case,n does not forward the message even though it has been selected

as a forwarding node by one of its neighbors. Since each node maintains a list of directions

from which it receives the same RREQ message, it can determine if all its neighbors have

received the RREQ message without it having forwarded the message. For example, ifn is

selected as a forwarding node by one of its neighbors aftern receives the RREQ message

from three of its neighbors that are at120◦ to each other with respect ton, thenn need not

forward this message because all its neighbors would have already received this message.

So, even if a noden is selected as a forwarding node, it need not forward the message,if it

can judge that all its neighbors would have received the message.
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When b initiates a RREQ for destination d
Select a list L of forwarding nodes;
if L is emptythen return ; /* No neighbor */
Init RREQ = (Seq=++Seq, SrcID=b DstID=d,

HopCount=1,FwdIDList=L);
Broadcast RREQ;

When b receives RREQ from noden at direction dir
if (RREQ.SrcID ==b) then return ;
Store (Seq=RREQ.Seq, SrcID=RREQ.SrcID, DirectionList=dir)

in RRT;
if RREQ is new or the route to RREQ.SrcID in RREQ is shorterthen

Remove all routes to RREQ.SrcID in RT;
Store(NextHop=n, HopCount=RREQ.HopCount) in the

NextHopInfoList corresponding to RREQ.SrcID in RT;
if b relayed this RREQ beforethen return ;
if RREQ.DstID ==b then /* Initiate a RREP */

Init RREP= (Seq=RREQ.Seq, SrcID=RREQ.SrcID,
DstID=RREQ.DstID, HopCount=1);

Broadcast RREP;
return ;

if b ∈ RREQ.FwdIDListthen /* It is a forwarding node */

if b has received but not relayed RREP for the RREQthen

Init RREP = (Seq=RREQ.Seq, SrcID=RREQ.SrcID,

DstID=RREQ.DstID, HopCount=1+(HopCount in RT));

Broadcast RREP;return ;

if b has already relayed RREP for this RREQthen return ;

if b has already relayed this RREQthen return ;

Select a list L of forwarding nodes;

if L is emptythen return ;

Set RREQ.FwdIDList = L;

RREQ.HopCount++;

Broadcast RREQ;

When b receives RREP fromn
/* Source node maintains multiple routes to a destination */
/* Intermediate nodes on a route to a destination maintain */
/* only one route to that destination */

if (RREP.DstID ==b) return ;
if (RREP.SrcID ==b) then

Append (NextHop=n, HopCount=RREP.HopCount) to the
NextHopInfoList corresponding to RREP.DstID in RT;

return ;
elseifRREP is new or RREP has better routethen

Remove the route entry for RREP.DstID in RT;
Store (NextHop=n, HopCount=RREP.HopCount) to the

NextHopInfoList corresponding to RREP.DstID in RT;
if b has already relayed RREQ but not RREPthen

RREP.HopCount++;
Broadcast RREP;

Figure 4.3: RPSF route discovery in the general case

The general-case algorithm uses the message types and per-node data structures given

in Table4.1.

• RREQ:A route-request message sent to find a route to a destination.

• RREP:The route-reply message sent to notify the source of a valid route.

• NIT: A table maintained at each node and contains the direction and distance informa-

tion for each of its neighbors. This table, which is periodically updated, is used for

determining forwarding nodes.
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Message or table name Contents
Route-Request packet (RREQ)Seq, SrcID, DstID, HopCount, FwdIDList
Route Reply packet (RREP)Seq, SrcID, DstID, HopCount
Route Repair packet (RRPR)AckFlag, SenderID, DstID, HopCount
Neighbor Information Table (NIT) NeighborID, Direction, Distance
Route-Request Table (RRT) Seq, SrcID, DirectionList
Route table (RT) DstID, NextHopInfoList

Table 4.1: Data structures for the algorithm in the general case

• RRT:A table maintained at each node containing information about the RREQ messages

received. For each RREQ message, it contains the sequence number (Seq), id of the

source node that initiated the RREQ message (SrcID), and a list of directions from

which the RREQ message was received.

•RRPR:A route-repair message used for repairing a broken route. A route to a destination

could be broken due to a node moving outside the transmissionrange of an adjacent

node in the route. RPSF only considers 1-hop repair.

• RT:The routing table maintained at each node, containing next-hop information for each

destination to which a route has been established.

• Seq:The sequence number assigned to a RREQ message by the source.Together with

the SrcID, Seq uniquely identifies a RREQ and its corresponding RREP message.

• ID: The unique identifier or address of a node, used in fields such as SrcID, DstID, and

NeighborID.

• HopCount: An integer message field. In the RREQ message, it counts the number of

nodes traversed by the RREQ message from the source. In the RREP message, it

counts the number of nodes traversed by the RREP message fromthe destination. In

the route repair (RRPR) message, it is meaningful only when the AckFlag is true,

when it counts the number of nodes on the path from the destination to the node that

have acknowledged the RRPR message.
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• FwdIDList: The list of nodes that need to forward the RREQ message.

• Direction: Information about the direction in which a neighbor lies.

• Distance:The physical distance between a node and its neighbor.

• DirectionList: The list of directions from which the same RREQ message has been

received so far.

• AckFlag: A Boolean field of an RRPR message. If it is false, the RRPR message

is a request sent for repairing a broken route to some destination. If true, it is an

acknowledgment sent by a node that has a route to the destination in response to a

RRPR request. .

• SenderID:The ID of the node that initiates the RRPR message.

• NextHopInfoList:For each destination, RPSF maintains multiple routes. Corresponding

to each destination, NextHopInfoList contains the list of next-hop nodes lying on

various paths to that destination; it also includes the HopCount to the destination via

each such node.

The algorithm for forwarding an RREQ message remains the same as in the ideal case

except in the way the forwarding nodes are selected. For selecting the forwarding nodes

in the general case, each node uses the selection criteria supplemented with Rules 1 and

2 discussed earlier. We prove below that the RREQ message sent by any source node

eventually reaches the destination if the destination is reachable from the source. We now

present the basic idea behind route discovery in the generalcase.

4.3.2 Basic Idea Behind RPSF in the General Case

The basic idea behind the route-discovery algorithm is as follows:
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When a node wants to find a route to a destination, it assigns a sequence num-

ber to the route request (RREQ), selects a set of forwarding nodes using the

criteria described in Section4.3.1, and sends the request. When an interme-

diate node receives the request, it stores the sequence number, source ID and

direction in its route-request table (RRT). If this path is shorter than an earlier

path through which the same route request was received or if it is a new request

then it stores the source ID and the next hop in the routing table (RT). If the

node receiving the RREQ is the destination, it sends an RREP with the same

sequence number and with HopCount initialized to 1. If the node receiving the

RREQ is an intermediate node that has not already forwarded the same RREQ,

it selects a set of forwarding nodes, increments the HopCount and forwards the

request. If the intermediate node already knows a route to the destination, ob-

tained through the corresponding RREP sent by the destination, it sends back a

route reply (RREP) with a sequence number that is same as the one in the route

request. The route reply propagates to the source along the path traversed by

RREQ in the reverse direction. When a node receives an RREP corresponding

to an RREQ (the ID of the node that sent the RREQ and the sequence number

uniquely identifies a RREQ), it increments the HopCount, stores the destina-

tion ID, next hop ID and HopCount in its routing table (RT) andbroadcasts the

RREP if it is a forwarding node for the corresponding RREQ. Anintermediate

node receiving an RREP does not forward it until it receives the corresponding

route request. Route replies propagate backward along the paths traversed by

the corresponding RREQs. Thus the source can maintain multiple routes to the

destination.

The formal description of the algorithm for route discoveryin the general case is given

in Figure4.3. We now prove the correctness of our algorithm.
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Figure 4.4: Proof of coverage in the general case

Lemma 4.1 In the general case, a RREQ message sent by a source nodes eventually

reaches its destinationd if d is reachable froms.

Proof: We prove this lemma by contradiction. Suppose a RREQ messagesent bys is

not received byd. Then there exists a paths, ...x, y, ...d from s to d and a nodex 6= d in

the path such thatx receives the RREQ message, but none of the nodes in the path beyond

x receives the RREQ message. Supposey is the first node followingx in the path that

does not receive the RREQ message. It is possible thaty is d. y is within the transmission

range ofx, buty did not receive the RREQ message; that is,x has not forwarded the RREQ

message. Two cases arise:

Case (1): x was chosen as a forwarding node by some node butx did not forward the

RREQ message because, in its judgment, based on the reception of the RREQ message in

various directions, all its neighbors includingy would have received it. So, this case does

not arise.

Case (2):x was not chosen as a forwarding node by any of the nodes from whichx received

the RREQ message.

SupposeA is one such node from whichx received the RREQ message. Sincex is within
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the transmission range ofA, A must have chosen at least two nodesB andD as forwarding

nodes such thatx lies in the sector6 DAB with 6 DAB ≤ 120◦. The following two sub-

cases arise:

Case (2.1):x lies within the transmission range of bothB andD as shown in Figure4.4(a),

and (b). In this case, sincey did not receive the message,y must be outside the transmission

range ofA, B andD. Moreover, sincey lies within the transmission range ofx, theny has

to lie in the sector6 DAB, because, ify lies outside the sector6 DAB and within distance

R from x, theny must be within distanceR from one of the nodesA, B or D, which is a

contradiction to our assumption thaty did not receive the message. In this case,B would

have selectedx or some other nodes in the sector6 DAB that is close to the line segment

BF and farthest fromB as a forwarding node according to the forwarding node selection

Rule 1, orC would have selected some node that would covery. Such a forwarding node

s, selected byB, would have forwarded the message that would have been received byy if

it is covered bys. However, ifs is closer toB thany, thens may not covery. In this case,

if s will selects a forwarding node that coversy, then we are done. Ifs does not select a

forwarding node that coversy, thens will do the same thing asB does andy will finally

be covered since the next selected forwarding node similar to s will be closer toy thans.

This contradicts the fact thaty did not receive the message. Hence the Lemma is true in

this case.

Case (2.2):x lies within the transmission range of eitherB or D but not both. Without

loss of generality, supposex lies within the transmission range ofB but notD as shown in

Figures4.4(c) and (d) (the case in whichx lies within the transmission range ofD but not

B is similar). Two sub-cases arise.

Case (2.2.1):y lies in the sector6 BAD. (We already know thaty is reachable fromx but

not fromA,B or D.) Such a situation is shown in Figure4.4(c). This case is similar to

Case 2.1. NodeB choosesx or some other nodes as a forwarding node usingRule 1 that

would covery, orC chooses some node that would covery.
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Case (2.2.2):y does not lie inside the sector6 BAD.

Sincey is reachable fromx, x is close to the line segmentAB, andy lies in the region

enclosed by the common tangent line to the two circles with radiusR and centers atA and

B and the two circles themselves, as is shown in Figure4.4(d). A simple calculation shows

that if y is reachable fromx, thenx lies inside the triangle△GAB such that6 GAB =

6 GBA = arctan(
2R−

√
4R2−|AB|2
|AB| ) ≤ arctan(2 −

√
3). In this case,A would have chosen

x or some other node close toA in the triangular region△GAB as a forwarding node

according toRule 2. Hencey is covered by such a node, contradicting to the fact thaty did

not receive the message. Hence the Lemma is true in this case.2

4.3.3 Routing-Table Maintenance

As nodes move in the network, one or more links in an established route may break. In

order to transmit the received data to the given destination, a node that detects broken

links needs to repair the broken route and update its routingtable. In many existing routing

algorithms (like AODV and DSR), route-error messages notify source nodes about a broken

link in a path, and the source nodes re-initiate route discovery to establish a new path. In

RPSF, each node can maintain multiple next hops for a given destination, helping it repair

a broken link by using other valid next hops. We take this approach for repairing broken

links.

The basic idea behind routing-table maintenance in RPSF is as follows: When a node

n detects a broken link, if it can not find another available link through which it can for-

ward data to the destination, it first sends a route repair (RRPR) message to its one-hop

neighbors. Upon receiving the RRPR message, each node updates its own route table by

removing appropriate links, and checks if it is a good forwarding node to the destination.

If so, it acknowledges the RRPR message. Otherwise, nothingneeds to be done. If noden

receives one or more acknowledgments for its RRPR message, the route has been repaired.

Otherwise, it initiates a route discovery on behalf of the source. The formal description of
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the route-maintenance algorithm is given in Figure4.5.

Function: HandleBrokenLink(ID, NextHop)
for each destinationd in RT do

Remove NextHop from NextHopInfoList of RT if appropriate;
if NextHopInfoList is emptythen /* No valid route tod */

if it has buffered data destined tod then
Init RRPR = (AckFlag=false, SenderID=ID, DstID=d,

HopCount=known hop count);
Broadcast RRPR;

/* this code is executed periodically */
When b finds that neighboring noden is out of transmission range

Call Function HandleBrokenLink(b, n);

When b drops a packet due to link failure ton
Call Function HandleBrokenLink(b, n);

When b receives a RRPR message fromn
if RRPR.AckFlagthen /* It is an ack for the RRPR request */

if RRPR.SenderID ==b then
Append (NextHop=n, HopCount=RRPR.HopCount) to the

NextHopInfoList corresponding to RRPR.DstID in RT;
if b has buffered data for RRPR.DstID, and has a valid route

Transmit the data;
else/* It is a request for route repair */

Removen from the NextHopInfoList of RRPR.DstID in RT;
if b has a route to RRPR.DstID and RRPR.HopCount> HopCount
in RT for RRPR.DstIDthen

Set RRPR.AckFlag = true;
Set RRPR.HopCount = HopCount in RT + 1;
Send RRPR back to RRPR.SenderID;/* Ack RRPR Request */

Figure 4.5: Route-maintenance algorithm

Let us follow an example to understand the route-maintenance algorithm. Figure4.6

shows a network with five nodes, whereS andD are the source and destination, respec-

tively. Two paths exist fromS to D. Suppose nodeA moves away.S now forwards data

throughB. If B also moves away,S no longer has any next hop forD in its route table.

Therefore,S broadcasts a RRPR message.E receives and acknowledges the RRPR mes-

sage.S then updates its routing table to reflect the fact thatE is a next hop for destination

D. If E also moves away,S re-initiates route discovery to find a path toD.

4.4 Performance Evaluation

We now present the results of performance evaluation of RPSFcompared to AODV [56].

We first introduce the simulation model and then present the simulation results and our

analysis of those results.
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Figure 4.6: An example of route maintenance

4.4.1 Simulation Model

We used GloMoSim [74], a widely used network-simulation tools for studying the perfor-

mance of routing algorithms for ad hoc networks, for evaluating the performance of RPSF.

We chose IEEE 802.11 [26] and IP as the MAC (Medium-Access Control) and network-

layer algorithms respectively. All nodes have a fixed transmission range of 350m. We used

the implementation of AODV that comes with the GloMoSim 2.0.3 package to compare its

performance with RPSF. This implementation employs expanding-ring search to discover

a route from a source to a destination. The neighborhood search range is enlarged by

increasing the TTL (TimeToLive) field in the IP header of the request packets. AODV starts

the search by setting TTL to 1 or to the previously known HopCount and repeats the search,

increasing the TTL by 2 until it reaches 35 (it increments theTTL from 7 directly to 35, the

maximum network diameter) or a RREP message is received before the timeout expires.

This phased search reduces the route-establishment overhead for destinations that are close

to the source. We simulated RPSF also with this mechanism to reduce the propagation of

route request messages.

In the implementation of AODV, we set the route-discovery timeout to 10 seconds. The

source checks if an RREP message is received within 80 times TTL milliseconds after the
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last time it initiated a route request. In our implementation of RPSF, we update the direction

and distance of the neighbors of each node every 2 seconds. Like AODV, the timeout for

checking route replies for RPSF is set to 80 times TTL milliseconds. A node re-initiates a

route request if it receives no reply before it times out.

4.4.2 Mobility Model

We adopt the steady state random-waypoint model [9,18,73] that is a widely used mobility

model for simulations. Under this model, each node travels from a random location to a

random destination at a random speed, the speed being uniformly distributed in a predefined

range. After a node reaches its destination, it pauses for a predetermined amount of time

and then moves to a new destination at a different randomly-chosen speed.

In our simulation, we set the speed range to 1 – 19 m/s. In orderto study how mobility

affects the performance of the routing algorithms, we selected pause times of 0, 30, 60, 90,

120, 200, 300, 500, and 900 seconds. When the pause time is 0 seconds, every node moves

continuously. As the pause time increases, the network approaches the characteristics of a

fixed network.

In a dense network, a path may always be available between anysource-destination

pair. On the contrary, if nodes are sparsely distributed, the network may be partitioned;

moreover, in this case, node mobility can exacerbate the situation. In our performance

evaluation, we simulated the following three scenarios to study the effect of density of the

nodes on performance:

• 1500× 1500m2 field with 200 nodes

• 1500× 1500m2 field with 300 nodes

• 1500× 1500m2 field with 400 nodes

We ran the simulation for each of the three scenarios for 15 simulated minutes.
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4.4.3 Traffic Model

To measure the effect of network traffic on RPSF, we used 5, 10,20 30, 40, or 50 CBR

(constant bit-rate) data sources. We selected both the sources and the destinations randomly

and uniformly. The sources transmit data between a start time and an end time; we selected

all start and the corresponding end times randomly and uniformly within the 15-minute

simulated interval in such a way that the start time precedesthe end time. We fixed the size

of data packets at 512 bytes and had each source generate packets at the rate of 4 packets

per second. Measurements were taken after a settling time [73] of 150 simulated seconds.

4.4.4 Performance Metrics

We used the following three metrics to evaluate performance:

• Packet-delivery ratio: The ratio of the data packets delivered to the destinations to

those generated by the CBR sources.

• End-to-end delay of data packets: This figure includes all possible delays, includ-

ing those caused by buffering due to route discovery, queuing delay at the interface

queue, retransmission delays at the MAC layer, and propagation and transfer time.

• Normalized routing overhead: The ratio of the number of routing control packets

transmitted to the number of data packets delivered to the destinations. We count

each time a node sends a routing control packet to its next-hop neighbor.

4.4.5 Confidence Intervals

As we mentioned earlier, we simulated 324 different scenarios (9 different pause times, 6

different numbers of CBR sources, three scenarios, and two algorithms,9×6×3×2 = 324)

for the two algorithms and simulated each scenario twenty times. We computed 95% con-

fidence intervals for packet-delivery ratio, end-to-end delay and normalized routing over-

head. Table4.2 gives the distribution of tests and the related error rangesas a percentage
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of the mean values. The values obtained for about 89.5% of theruns lie in the interval

[(meanvalue−meanvalue ∗ 0.25), (meanvalue+meanvalue ∗ 0.25)].

For clarity and simplicity, we do not plot error bars in the graphs.

Error range (%) 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25 25 - 100 100 - 155
Tests (%) 32 23.6 20.6 7.6 4.7 9.9 1.6

Table 4.2: Distribution of tests in terms of confidence intervals

4.4.6 Performance Results

Scenario I

This scenario has 200 nodes.

Figure4.7and4.8show the performance of RPSF compared to AODV with respect to

the three metrics for varying numbers of data sources and pause times. In Figure4.7, the

values of the three metrics are the average values taken overvarious pause times ranging

from 0 to 900 seconds for different number of data sources. Figure4.8contains the values

of the three metrics for various pause times, averaged over 5to 50 CBR sources.

Under scenario I, the simulation results show that the average normalized routing over-

head of AODV and RPSF is 2.23 and 0.67 respectively. As expected, RPSF uses fewer

nodes for forwarding route requests than AODV, resulting inlower overhead. RPSF also

has a better average packet-delivery ratio than AODV. RPSF has slightly higher average

end-to-end delay, which becomes much more pronounced as thenumber of CBR sources

increases. The AODV line changes more sharply than RPSF as the pause time increases.

Therefore, performance of RPSF is more stable than AODV whennodes with high mobil-

ity are involved in the simulation. The results obtained in scenario II and III also conforms

with this observation.

Scenario II

This scenario has 300 nodes.
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Figure 4.7: Varying number of data sources in scenario I (200nodes)

Figures4.9and4.10show the performance of RPSF compared to AODV with respect

to the three metrics for varying numbers of data sources and pause times. In this scenario,

RPSF performs better than AODV with respect to all three metrics. For instance, the aver-

age values of the normalized routing overhead, packet-delivery ratio, and end-to-end delay

of RPSF are 0.81, 0.986, and 0.052 respectively, while the three measurements for AODV

are 4.57, 0.963, and 0.055 respectively. In this scenario, AODV has slightly lower end-to-

end delay when fewer CBR sources are involved. However, it has higher end-to-end delay
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Figure 4.8: Varying the pause time in scenario I (200 nodes)

when there are 50 CBR sources, which makes its average value higher than that of RPSF.

Again, as results in Figure4.10 indicate, the performance of RPSF is much more stable

than AODV with respect to node mobility.

Scenario III

This scenario has 400 nodes.

Figures4.11and4.12show the performance of RPSF compared to AODV with respect

to the three metrics for varying numbers of data sources and pause times. The simulation
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Figure 4.9: Varying number of data sources in scenario II (300 nodes)

results under this scenario are similar to the simulation results under scenario II. RPSF has

much lower routing control packet overhead, higher packet-delivery ratio, and lower end-

to-end delay than AODV in this case. Even in such a dense network, the average normalized

routing overhead of RPSF is 1.07, which is only 0.4 more than that in scenario I and 0.26

more than that in scenario II. This case also demonstrates that RPSF is much more stable

than AODV.
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Figure 4.10: Varying the pause time in scenario II (300 nodes)

4.4.7 Analysis

We make the following observations based on the simulation results.

Routing Overhead

In sparse networks, the two algorithms have similar packet-delivery ratio. Since RPSF tries

to guarantee the delivery of generated data packets, it issues many useless RREQ messages

searching for non-existent paths in a partitioned network.However, as the network becomes

104



www.manaraa.com

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5  10  15  20  25  30  35  40  45  50

N
or

m
al

iz
ed

 c
on

tr
ol

 o
ve

rh
ea

d

Number of data srcs

Average normalized control overhead

AODV
RPSF

(a)

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 5  10  15  20  25  30  35  40  45  50

P
ac

ke
t d

el
iv

er
y 

ra
tio

Number of data srcs

Average packet delivery ratio

AODV
RPSF

(b)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 5  10  15  20  25  30  35  40  45  50

E
nd

-t
o-

en
d 

de
la

y 
(s

)

Number of data srcs

Average end-to-end delay

AODV
RPSF

(c)

Figure 4.11: Varying number of data sources in scenario III (400 nodes)

denser, the number of route-control packets issued by RPSF does not greatly increase. This

gentle rise is due to RPSF’s selective forwarding mechanismin flooding RREQ messages.

This mechanism is very efficient in controlling routing overhead by limiting the number of

nodes that forward the RREQ messages in dense networks.

The average normalized routing overhead under all three scenarios for AODV and

RPSF are 6.81 and 0.86 respectively. RPSF has relatively constant overhead as the number

of nodes in the network increases from 200 to 400. On the contrary, AODV incurs much
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Figure 4.12: Varying the pause time in scenario III (400 nodes)

more routing overhead as the number of nodes increases. The same thing happens as the

number of CBR sources increases or the nodes become more mobile (or pause time de-

creases). Thus, RPSF performs much better than AODV with respect to routing overhead

in networks with highly mobile nodes, networks in which nodes are densely distributed, or

heavily loaded networks.
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End-to-end Delay

The overall average end-to-end delay for AODV and RPSF are 0.072 and 0.064 respec-

tively. RPSF has highest end-to-end delay in a sparse network. This result arises because it

is hard to repair a broken path in a sparse network. As the density of the network increases,

more paths become available, and the end-to-end delay is more dependent on the number

of hops and the network load. There the end-to-end delay under RPSF is comparable to

AODV. In high-density and high-load networks, RPSF has lower end-to-end delay than

AODV because RPSF has much lower routing overhead.

Network Load

As we expect, as network load increases, both algorithms show increasing normalized rout-

ing overhead and end-to-end delay. However, RPSF is relatively stable as the number of

data sources increases, but AODV degrades greatly.

4.5 Discussion

Our measurements show that RPSF is far superior to AODV, especially for higher node

densities. At 400 nodes in a region of1500 × 1500m2, each node has, on average, about

68 neighboring nodes within transmission distance. This density is typical of a scenario

such as attendees of a conference trying to establish an ad hoc network of their laptops.

However, this superiority has a price. We require accurate position knowledge, which

implies additional hardware (GPS or smart antennas) and itsconcomitant battery drain.

However, unlike existing position-based routing algorithms, our algorithm requires that

each node know the relative position only of its neighboringnodes, not of all nodes in

the network. We also require that communication links be bidirectional, even at extreme

ranges. A practical implementation of RPSF would most likely choose forwarding nodes

at perhaps 80% of the transmission range to improve the chance of bidirectionality of links;

this choice would increase the average path length, and therefore the end-to-end delay.
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4.6 Conclusion

This chapter proposes a novel mechanism for flooding in ad hocnetworks. It presents

the RPSF routing algorithm that employs that mechanism. In adense network, we have

demonstrated that the algorithm efficiently selects a limited, but sufficient, set of forwarding

nodes to flood the route requests. We compared the performance of our algorithm with a

well known routing algorithm AODV. Simulation results showthat RPSF always has much

lower normalized routing overhead than AODV.

Copyright c© Qiangfeng Jiang 2013
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Chapter 5

Conclusion and Future Work

5.1 Summary

This dissertation focused on designing efficient algorithms for achieving fault tolerance in

distributed systems and routing in mobile ad hoc networks.

We presented a novelcommunication-inducedcheckpointing algorithm that makes ev-

ery checkpoint belong to a consistent global checkpoint. Under this algorithm, every pro-

cess stores the tentative checkpoint in memory first and thenflushes it to stable storage

when there is no contention for accessing stable storage or after finalizing the tentative

checkpoint. Messages sent and received after a process takes a tentative checkpoint are

logged into memory until the tentative checkpoint is finalized. Since a tentative checkpoint

can be flushed to stable storage any time before finalizing it,contention for stable network

storage that arises due to several processes storing the checkpoints simultaneously is re-

duced/eliminated. Moreover, unlike existing communication-induced checkpointing algo-

rithms, our algorithm, in general, does not force a process to take a checkpoint before pro-

cessing any received message in order to prevent useless checkpoints. Thus, a process can

first process the received message and then take the checkpoint. This improves the response

time for messages. It also helps a process take the regularlyscheduled basic checkpoints at

those times. If messages are not frequently exchanged amongprocesses, additional control

messages may be required for the algorithm to collect consistent global checkpoints in a

timely manner. We augmented the basic algorithm with control messages to speed up the
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collection of consistent global checkpoints in a timely manner for applications in which

processes do not communicate frequently. We conducted a performance evaluation of the

algorithm and studied the overhead induced by the control messages which also helps in

determining when control messages are needed. We also compared the performance of our

algorithm with Vaidya’s algorithm [66]. In minimizing the contention for stable storage at

the network file server, our algorithm always performs better than Vaidya’s algorithm. Our

algorithm also has other desirable features such as the scalability, low control messages

(or even no control messages) and less checkpoint latency compared to Vaidya’s algorithm

algorithm.

We designed two novel methods for suppressing redundant route request messages

when broadcasting them in mobile ad hoc networks. We then presented two new rout-

ing protocols, namely, triangle based routing (TBR) protocol and routing protocol with

selective forwarding (RPSF), for mobile ad hoc networks, that employ the mechanisms.

Performance of TBR and RPSF have been evaluated with GloMoSim simulator. We have

demonstrated that the protocols efficiently select limited, but sufficient, set of nodes to

forward the route requests. We compared the performance of our algorithms with a well

known routing algorithm AODV. Simulation results show thatboth TBR and RPSF always

have much lower normalized routing overhead than AODV.

5.2 Future Work

In the future, we will focus on designing better algorithms for achieving fault tolerance in

distributed systems and routing in mobile ad hoc networks.

In Chapters3 and4, we demonstrated the advantages of TBR and RPSF with respectto

routing overhead in mobile ad hoc networks. They can be tunedto be more efficient, more

adaptive, and easier to implement. We discuss below the waysin which they can be fine

tuned.
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Algorithm for Selecting Forwarding Nodes

The algorithms for selecting forwarding nodes in the current implementation of TBR and

RPSF may select more forwarding nodes than needed. This gives an opportunity for im-

proving them by designing more efficient forwarding node selection algorithm.

There are two ways in which the method of selecting forwarding nodes can be im-

proved. One approach is to modify the method so that the forwarding nodes lying near

the network edge do not select further forwarding nodes if all of their neighbors have been

already covered. The other approach is to modify the forwarding node selection algorithm

so that the number of selected forwarding nodes are reduced.

The former approach is hard to achieve due to the difficulty indetermining the network

edge. However, some of the edge nodes can be detected by checking if they have at least

one neighbor in any sector of180o centered at themselves. They are considered as internal

nodes if the condition holds or edge nodes otherwise. This information is exchanged be-

tween neighboring nodes. Therefore, each node has basic knowledge about its closeness to

the network edge. Although the information does not determine the exact network edge, it

is enough for forwarding nodes to determine if they need to select more forwarding nodes

further.

The latter approach is more about algorithm design. The algorithm employed in the

current implementation of RPSF only chooses forwarding nodes in such a way that each

node in a connected network is covered by one or more selectedforwarding nodes. How-

ever, it may select forwarding nodes more than necessary since it does not fully meet the

two sub-criteria, selecting as few forwarding nodes as possible and the selected forward-

ing nodes are as far away as possible. We plan to develop and implement efficient node

selection algorithm which closely matches the criteria.
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Multi-path Routing

Multi-path routing is a popular method for addressing reliability issue and balancing net-

work load. In multi-path routing protocols, researchers are more interested in node disjoint

and edge disjoint multi-paths for routing. Supporting reliable communications and balanc-

ing network load are easier to achieve with the help of node disjoint or edge disjoint paths.

Although TBR and RPSF are multi-path routing protocols, they do not exploit any prop-

erty of multi-path. Therefore, utilizing multi-path properties for reliable communication

and studying its performance is one of our goals.

In the current implementation of TBR and RPSF, a multi-path route, if available, is

discovered in each route discovery process. However, it cannot be used to support reli-

able communication because the multiple paths may not be node disjoint or edge disjoint.

Therefore, we plan to extend them so that they are able to search for node disjoint and edge

disjoint paths. In addition, we will measure the reliability of a route in terms of the number

of node disjoint or edge disjoint paths. In the future, for TBR and RPSF, the number of

paths for each route will be considered as a QoS parameter.

Prerequisite Information for RPSF

In the current version of RPSF, it is required that every nodein the network needs the

distance and direction information of each of its neighbors. This is possible only if each

mobile node is equipped with smart antennas. We will relax this requirement and design

efficient forwarding node selection algorithms.

Since obtaining direction information is much more difficult than getting distance in-

formation, we will relax the condition of requiring direction information. Under the current

RPSF, direction information helps in reducing the number ofselected forwarding nodes and

guarantees that all of the two-hop neighbors of the selectors are/will be covered by some

forwarding nodes. Therefore, to relax the direction information requirement, hosts running

RPSF need two-hop neighbor information at least.
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By relaxing direction information requirement, the problem of forwarding node selec-

tion can be described as: for nodeA, find a set (of one-hop neighbors) as small as possible

such that every two-hop neighbor is at least covered by a nodein the set. We refer the

neighbors in the set to the forwarding nodes of nodeA. This problem has been addressed

in many papers in the literature using various graph models,e.g. unit disk graph [10], rel-

ative neighborhood graph (RNG) [12,58,62], and dominating set [6,70,71]. However, we

still feel the need to propose a new algorithm for forwardingnode selection based on RNG

model, and compare it with the developed algorithms with regard to the performance.

Quality of Service

Ad hoc networks are likely to support multimedia applications which require high QoS

requirements. To support such applications, routing protocols which ensure the required

level of QoS need to be developed. We propose to extend our already developed RPSF

to support QoS and also propose to develop new and more efficient protocols that support

QoS.

Under the new RPSF, we plan to only allow partial network capacity that are used for

QoS control. This is to avoid the scenario in which some nodesreserve all of the network

capacity and prevent other nodes from using the network.

Security

As the mobile ad hoc networks have the potential for being deployed in critical areas, such

as business meetings, and battle fields, security becomes animportant issue. We will extend

TBR and RPSF to secure routing protocols. The security issues that need to be addressed

related to routing in mobile ad hoc networks are:

1. Ensuring anonymity: preventing attackers from knowing about the source and desti-

nation in the routing packets.

2. Privacy: preventing attackers from knowing the found routes.
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3. Alteration: preventing attackers from modifying found routes.

4. Masquerading: preventing attackers from providing sources with false routes to des-

tinations.

5. Denial of service: preventing attackers from initiatingtoo many route requests.

Among the security issues discussed above, ensuring anonymity is one of the most im-

portant issues to be addressed. To ensure anonymity, TBR andRPSF need to be changed to

source routing, since table driven routing can not be used tohide the addresses of destina-

tions. After the change is made, anonymity can be achieved byefficiently changing routes

for data communication from time to time and randomly addingredundant nodes before

the source node and after the destination node respectivelyon the routes. The changing

routes can complicate the analysis of data traffic pattern. And randomly adding redundant

nodes on the routes can hide the source and destination nodesof each data transmission

from the attackers.

For adding the other security features, efficient encryption and authentication mecha-

nisms need to be developed. With these mechanisms available, the security features can be

easily incorporated. For example, privacy can be achieved by encrypting the source routes

for data transmission (and allow each intermediate node on the route to get the next hop

easily); alterations can be detected by appropriate hash functions; and masquerading and

denial of service attacks can be prevented given well definedauthentication mechanisms.

Therefore, our future work here mainly focuses in the encryption and authentication mech-

anisms that are deployable in mobile ad hoc networks.

Fault-Tolerance

For applications in environments such as battlefields, disaster areas, and natural habitats,

mobile nodes could fail, which may partition the network. Fault tolerance provides the ca-

pability for networks to continue functioning in the presence of failed nodes. Nevertheless,

not much work has been done in the area of fault tolerance in mobile ad hoc networks.
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In the literature, there are two major fault tolerance schemes, namely, checkpointing-

recovery and redundancy. Under the former scheme, the executing states of a process

are checkpointed from time to time. When a process fails, theprocesses involved in the

computation can be restarted from the latest consistent saved states. Under the later scheme,

nodes prone to failure are deployed with more than one identical copies (nodes), but only

one copy (called primary copy) is active and participates incomputation. The other copies

(called secondary copies) monitor the behavior of the primary copy and change their status

according to the executing status of the primary copy. When the primary copy fails, one

of the secondary copies will be elected as the new primary copy and take the place of the

failed copy and undertake the computation. Clearly, the twoschemes have pros and cons in

different applications. For example, the former scheme is considered to be better in terms

of costs, while the other scheme is preferable in terms of recovery time.

Copyright c© Qiangfeng Jiang 2013
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